Чтение онлайн

на главную - закладки

Жанры

Ткань космоса. Пространство, время и текстура реальности
Шрифт:

В последние десятилетия интерес к гипотетическим конструкциям машины времени вновь ожил. В 1970-х гг. Фрэнк Типлер заново проанализировал и уточнил решение ван Стокума, а в 1991 г. Ричард Готт из Принстонского университета открыл другой метод построения машины времени с использованием так называемых космических струн (гипотетических бесконечно длинных нитеобразных остатков фазовых переходов в ранней Вселенной). Всё это важные достижения, но проще всего описать конструкцию, предложенную Кипом Торном и его студентами из Калифорнийского технологического института. Они использовали представление о так называемых «кротовых норах» во Вселенной.

Проект машины времени на основе кротовой норы

Я сначала изложу основы стратегии построения машины времени, предложенной Торном, а в следующем разделе мы обсудим проблемы, с которыми столкнётся

любой строитель машины времени, руководствующийся этим планом.

«Кротовая нора» — это гипотетический тоннель в пространстве. Более привычный нам тоннель, такой как тоннель в горе, позволяет сократить путь из одного места в другое. Кротовые норы служат нам аналогичным образом, но они отличаются от привычных нам тоннелей в одном важном отношении. В то время как обычные туннели дают новый путь в существующем пространстве (гора и занимаемое ей пространство существуют до строительства тоннеля), кротовая нора предоставляет тоннель из одного места пространства в другое по новой, ранее не существовавшей трубе пространства. Устрани вы тоннель через гору, занимаемое горой пространство всё равно останется. А вот если вы устраните кротовую нору, то исчезнет и занимаемое ей пространство.

На рис. 15.2 аиллюстрируется кротовая нора, соединяющая супермаркет «На скорую руку» с атомной электростанцией Спрингфилда, но эта схема может вводить в заблуждение, поскольку может показаться, что кротовая нора простирается по воздушному пространству Спрингфилда. Более точным является представление о кротовой норе как о новой области пространства, соединяющейся с обычным, известным нам пространством только на своих концах — «входах». Если, бродя по улицам Спрингфилда, вы осматриваете небо в поисках кротовой норы, вы ничего не увидите. Единственный способ увидеть её — это пойти в супермаркет «На скорую руку», где вы обнаружите отверстие в обычном пространстве — вход в кротовую нору. Глядя сквозь это отверстие, вы увидите атомную электростанцию в месте расположения другого входа, как на рис. 15.2 б. Другой недостаток рис. 15.2 асостоит в том, что кротовая нора не выглядит кратчайшим путём. Можно исправить это, изобразив кротовую нору как на рис. 15.3. Как видно, обычный маршрут от атомной электростанции до супермаркета действительно длиннее, чем новый путь через кротовую нору. Искривления на рис. 15.3 отражают трудности передачи на плоской странице геометрии общей теории относительности, но сам рисунок даёт интуитивное представление о новом соединении через кротовую нору.

Рис. 15.2.( а) Кротовая нора, соединяющая супермаркет «На скорую руку» с атомной электростанцией. ( б) Вид через кротовую нору со стороны супермаркета на атомную станцию

Рис. 15.3.На этом рисунке наглядно видно, что кротовая нора предоставляет более короткий путь (кротовая нора на самом деле находится внутри супермаркета «На скорую руку» и внутри атомной электростанции, но это труднее показать на таком рисунке)

Никто не знает, существуют ли в действительности кротовые норы, но несколько десятилетий тому назад физики установили, что их существование допускается уравнениями общей теории относительности, так что они вполне могут быть объектами теоретического исследования. В 1950-х гг. Джон Уиллер вместе со своими сотрудниками одними из первых исследовали кротовые норы и открыли множество их фундаментальных математических свойств. Позже Торн с сотрудниками вскрыли всё богатство кротовых нор, осознав, что они могут давать короткие пути не только в пространстве, но и во времени.

Идея состоит вот в чём. Представим, что Барт и Лиза стоят на противоположных концах кротовой норы Спрингфилда — Барт на атомной электростанции, а Лиза в супермаркете «На скорую руку», — непринуждённо болтая друг с другом о том, что подарить Гомеру на его день рожденья, и затем Барт решает совершить короткое трансгалактическое путешествие (чтобы

достать Гомеру его любимые рыбные палочки, изготавливаемые в галактике Андромеды). Лизе не очень-то нравится эта затея, но поскольку она всегда хотела посмотреть на галактику Андромеды, она уговаривает Барта погрузить на его корабль его вход кротовой норы, так чтобы затем она смогла взглянуть через кротовую нору на далёкую галактику. Возможно, вы думаете, что во время своего путешествия Барт растянет кротовую нору, но такая мысль предполагает, что кротовая нора соединяет супермаркет с космическим кораблём через обычное пространство. Но это не так. И, как проиллюстрировано на рис. 15.4, благодаря чудесам геометрии общей теории относительности протяжённость кротовой норы может оставаться неизменной в ходе всего путешествия. Это самое главное. Даже если Барт находится в галактике Андромеды, расстояние между ним и Лизой по кротовой норе не меняется. Таково свойство кротовой норы как короткого пути сквозь пространство.

Рис. 15.4.( а) Кротовая нора, соединяющая супермаркет «На скорую руку» с атомной электростанцией. ( б) Нижний вход кротовой норы перенесён (с атомной электростанции) в космическое пространство (на космическом корабле, не показанном на этом рисунке). Протяжённость кротовой норы остаётся неизменной. ( в) Вход кротовой норы достигает галактики Андромеды; другой её вход всё ещё находится в супермаркете. Протяжённость кротовой норы не меняется в ходе всего путешествия

Для определённости предположим, что Барт развивает скорость, составляющую 99,999999999999999999% от скорости света, и на путешествие до галактики Андромеды у него уходит четыре часа. Во время путешествия Барт продолжает болтать с Лизой как и раньше, через кротовую нору. Когда корабль достигает галактики Андромеды, Лиза просит Барта замолчать, чтобы спокойно насладиться разворачивающейся панорамой далёкой галактики. Но Барту не терпится поскорее взять рыбные палочки и вернуться домой. Лиза возмущена эгоизмом Барта, но соглашается поддерживать с ним связь до его возвращения. Четыре часа спустя корабль Барта благополучно садится на лужайке перед школой Спрингфилда.

Выглянув в иллюминатор своего корабля, Барт несколько шокирован. Здание школы выглядит совсем по-другому, а табло над футбольным стадионом показывает дату 6 млн лет спустя после его отлёта. «Что за чёрт!?!» — говорит он самому себе, но мгновение спустя всё становится ясно. Из недавней задушевной беседы с Шестёркой Бобом [100] он вспоминает, что специальная теория относительности утверждает, что чем быстрее вы двигаетесь, тем медленнее идут ваши часы. Если вы на высокой скорости понесётесь в открытый космос, а затем вернётесь, то по вашим часам может пройти всего лишь несколько часов, тогда как по часам неподвижного наблюдателя пройдут тысячи или миллионы лет, если не больше. Быстро подсчитав, Барт убеждается, что за восемь часов его путешествия на корабле на Земле прошло 6 млн лет. Дата на табло верная; Барт понимает, что перенёсся далеко в будущее Земли.

100

Еще один персонаж сериала о семейке Симпсонов, злейший враг Барта. (Прим. перев.)

«...Барт, отзовись! Барт! — кричит Лиза через кротовую нору. — Ты слышишь меня? Иди сюда. Я хочу успеть вернуться домой к обеду». Барт смотрит в жерло кротовой норы и говорит Лизе, что уже приземлился на лужайке возле школы. Вглядываясь через кротовую нору, Лиза видит, что Барт говорит правду, но, бросая взгляд из супермаркета на школу, она не видит его корабля на лужайке. «Я не вижу твоего корабля», — говорит она.

«На самом деле нет ничего странного, — с гордостью отвечает Барт. — Я приземлился возле школы, но в будущем, через 6 млн лет. Ты не можешь увидеть меня, выглянув в окно супермаркета, ведь хотя ты смотришь туда, куда надо, но не в то время. Ты смотришь на 6 млн лет раньше».

Поделиться:
Популярные книги

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3