Чтение онлайн

на главную - закладки

Жанры

Трактат об электричестве и магнетизме. Том 2.
Шрифт:

ds

ds'

cos

,

(12)

ee'

r

t

^2

=

2c^2ii'

ds

ds'

dr

ds

dr

ds'

,

(13)

ee'

r

^2r

t^2

=

2c^2ii'

ds

ds'

r

d^2r

dsds'

(14)

и

мы можем записать выражения (1) и (2) для силы притяжения между ds и ds' в виде

1

c^2

ee'

r^2

u^2

3

2

r

t

^2

,

(15)

1

c^2

ee'

r^2

r

^2r

t^2

1

2

r

t

^2

.

(16)

850. Обычное в теории статического электричества выражение для силы отталкивания между двумя электрическими частицами e и e' есть ee'/r^2, и

ee'

r^2

=

(e+e)(e'+e')

r^2

,

(17)

что и даёт электростатическое отталкивание между двумя элементами, если они в целом заряжены.

Следовательно, если допустить, что отталкивание двух частиц происходит согласно одному из двух модифицированных выражений

ee'

r^2

1

+

1

c^2

u^2

3

2

r

t

^2

(18)

или

ee'

r^2

1

+

1

c^2

r

^2r

t^2

1

2

r

t

^2

,

(19)

то мы сможем вывести из них и обычные электростатические силы, и силы, действующие между токами так, как они были определены Ампером.

851. Первое из этих выражений, (18), было открыто в июне 1835 г. Гауссом 1 он истолковал его как основной закон электрического действия, состоящий в том, что «два элемента электричества, находящиеся в состоянии относительного движения, притягивают или отталкивают друг друга, но не так, как если бы они находились в состоянии относительного покоя». Это открытие не было, насколько мне известно, опубликовано при жизни Гаусса, так что второе выражение, открытое независимо В. Вебером и опубликованное в первой части его знаменитого труда Elektrodynamische Maasbestimmungen 2, было первым такого рода результатом, сделавшимся известным научному миру.

1Werke, (G"ottingen edition, 1867), vol. V, p. 616.

2Abh. Leibnizens Ges., Leipzig (1846), p. 316.

852. Эти два выражения приводят к одному и тому же результату, будучи применены к определению механической силы между двумя электрическими токами, и этот результат совпадает с результатом Ампера. Однако, когда мы рассматриваем их как выражения физического закона взаимодействия двух заряженных частиц, мы обязаны спросить себя, согласуются ли они с другими известными фактами природы.

Оба эти выражения включают в себя относительные скорости частиц. Далее, при математическом обосновании хорошо известного принципа сохранения энергии обычно предполагается, что сила, действующая между двумя частицами, является функцией только расстояния между ними; принято считать, что если эта сила окажется функцией ещё чего-нибудь, например времени или скорости частиц, то доказательство утрачивает смысл.

Поэтому иногда полагают, что закон электрического действия, содержащий скорость частиц, несовместим с принципом сохранения энергии.

853. Формула Гаусса не согласуется с этим принципом и поэтому должна быть отвергнута, так как она приводит к заключению, что энергию можно было бы неограниченно создавать в ограниченной системе с помощью физических средств. Это возражение неприменимо по отношению к формуле Вебера, ибо им было показано 3, что если принять в качестве потенциальной энергии системы, состоящей из двух электрических частиц, величину

=

ee'

r

1

1

2c^2

r

t

^2

,

(20)

то отталкивание между частицами, которое находится путём дифференцирования этой величины по r и смены знака, даётся формулой (19).

3Pogg. Ann., LXXIII, p. 229 (1848).

Таким образом, работа, совершаемая над движущейся частицей силой отталкивания со стороны неподвижной частицы, равна -, где и - значения в начале и в конце пути частицы. Теперь зависит только от расстояния r и от проекции скорости на направление r. Поэтому, если частица описывает произвольный замкнутый путь, так что её положение, скорость и направление движения в конце и в начале пути одинаковы, то величина равна и в целом за цикл работа не совершается.

Следовательно, частица, совершающая периодическое движение под действием силы, принятой Вебером, не может производить неограниченное количество работы.

854. Однако Гельмгольц в своей очень сильной работе «Уравнения движения электричества в покоящихся проводниках» 4, показав, что формула Вебера не противоречит принципу сохранения энергии, пока речь идёт только о работе, совершаемой при полном цикле, указывает, что она ведёт к заключению, что две электризованные частицы, движущиеся в соответствии с законом Вебера, могут иметь вначале конечные скорости, а затем, всё ещё находясь на конечном расстоянии друг от друга, могут приобрести бесконечную кинетическую энергию и совершить бесконечное количество работы.

Поделиться:
Популярные книги

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1