Трактат об электричестве и магнетизме. Том 2.
Шрифт:
ds'
ds
ds'
+
i
1
r
d^2r
dsdt
dr
ds'
–
d^2r
ds'dt
dr
ds
ds
ds'
.
(31)
Далее, если первый контур замкнут,
d^2r
dsds'
ds
=
0.
Следовательно,
1
r
dr
ds
dr
ds'
ds
=
1
r
dr
ds
dr
ds'
+
d^2r
dsds'
ds
=-
cos
r
ds
.
(32)
Но
cos
r
ds
ds'
=
M
(33)
согласно
Поскольку второй член в уравнении (31) исчезает, когда оба контура замкнуты, мы можем записать для электродвижущей силы во втором контуре
–
d
dt
(iM)
,
(34)
что согласуется с тем, что мы уже установили экспериментально (п. 539).
О формуле Вебера, рассматриваемой как следствие передачи с постоянной скоростью действия от одной электрической частицы к другой
861. В очень интересном письме к В. Веберу 8 Гаусс ссылается на электродинамические рассуждения, которыми он занимался очень давно и которые опубликовал бы, если бы смог затем установить то, что он считал краеугольным камнем электродинамики, а именно вывод силы, действующей между движущимися электрическими частицами, рассматривая не мгновенное действие между ними, а считая, что оно распространяется во времени подобно свету. Ему не удалось сделать такой вывод, когда он оставил свои электродинамические исследования, но у него была личная убеждённость, что в первую очередь было бы необходимо составить последовательное представление о том, каким способом происходит распространение.
8 March 19, 1845, Werke, Bd. V, 629.
Три выдающихся математика попытались заложить этот краеугольный камень электродинамики.
862. В мемуаре, представленном королевскому обществу Гёттингена в 1858 г., но взятом обратно и опубликованном только после смерти автора в 1867 г. в «Поггендорфовых учёных записках» (Poggendorf’s Annalen), Бернард Риман выводит явления индукции электрических токов из модифицированной формы уравнения Пуассона:
d^2V
dx^2
+
d^2V
dy^2
+
d^2V
dz^2
+4
=
1
^2
d^2V
dt^2
,
где V есть электростатический потенциал, - скорость.
Это уравнение имеет ту же самую форму, что и уравнения, выражающие распространение волн и других возмущений в упругих средах. Однако автор, по-видимому, избегает явного упоминания о среде, через которую происходит распространение.
Математическое исследование Римана было проверено Клаузиусом 9, который не соглашается с его математическими выкладками и показывает, что гипотеза о распространении потенциала подобно свету не ведёт ни к формуле Вебера, ни к другим известным законам электродинамики.
9 Pogg., Bd. CXXXV, p. 612.
863. Клаузиус также проверил и гораздо глубже разработанные исследования К. Неймана в «Принципах электродинамики» 10. Нейман, однако, указал 11, что его теория передачи потенциала от одной электрической частицы к другой совершенно отлична от теории, предложенной Гауссом, принятой Риманом и подвергшейся критике со стороны Клаузиуса, в которой распространение подобно распространению света. Напротив, по Нейману имеется максимально возможное различие между передачей потенциала и распространением света.
10 T"ubingen, 1868.
11Mathematische Annalen, I, 317.
Светящееся тело посылает свет во всех направлениях, причём интенсивность света зависит только от светящегося тела и не зависит от присутствия тела, которое им освещается.
С другой стороны, электрическая частица посылает потенциал, величина которого ee'/r зависит не только от заряда e излучающей частицы, но также от заряда e' принимающей частицы и от расстояния r между частицами в момент испускания.
В случае света интенсивность уменьшается по мере распространения света всё дальше от излучающего тела; испущенный потенциал течёт к телу, на которое он действует, без малейшего изменения своего первоначального значения.
Свет, принятый освещённым телом, как правило, составляет лишь часть падающего на него света; потенциал, полученный притягиваемым телом, идентичен или равен потенциалу, который к нему прибывает.
Кроме того, скорость передачи потенциала не является постоянной относительно эфира или пространства, подобно скорости света, а более похожа на скорость снаряда, постоянную относительно скорости излучающей частицы в момент излучения.
Отсюда следует, что для того, чтобы понять теорию Неймана, мы должны образовать представление о процессе передачи потенциала, весьма отличное от того, к которому мы привыкли при рассмотрении распространения света. Не могу сказать, может ли эта теория когда-либо быть принятой в качестве «конструктивного представления» процесса передачи, которое казалось необходимым Гауссу, но сам я оказался не в состоянии построить для себя последовательное представление о теории Неймана.
864. Профессор Бетти из Пизы 12 рассмотрел этот вопрос другим путём. Он предполагает, что замкнутые контуры, в которых текут электрические токи, состоят из элементов, каждый из которых поляризуется периодически, т.е. через эквидистантные промежутки времени. Эти поляризованные элементы действуют друг на друга так, как если бы они были маленькими магнитами, оси которых ориентированы в направлении, касательном к контурам. Период этой поляризации одинаков во всех электрических контурах. Бетти предполагает, что действие одного поляризованного элемента на другой, находящийся на некотором расстоянии, происходит не мгновенно, а через промежуток времени, пропорциональный расстоянию между элементами. Таким способом он получает выражения для действия одного электрического контура на другой, совпадающие с теми, которые нам известны как правильные. Однако Клаузиус и в этом случае также подверг критике некоторые части математических вычислений, но в это мы здесь вдаваться не будем.
12Nuovo Cimento, XXVII (1868).
865. По-видимому, в умах этих выдающихся людей существует некоторое предубеждение, или априорное возражение, против гипотезы среды, в которой имеют место явления излучения света и тепла, а также электрические действия на расстоянии. Правда, одно время все те, кто размышляли о причинах физических явлений, имели обычай объяснять каждый вид действия на расстоянии при помощи специальной эфирной жидкости, функцией и свойством которой было производить эти действия. Они заполняли всё пространство трижды и четырежды различными видами эфиров, свойства которых были изобретены просто для того, чтобы «соблюсти приличия», так что более рационалистические исследователи готовы были скорее принять не только конкретный закон притяжения на расстоянии Ньютона, но даже постулат Котса (Cotes) 13 о том, что действие на расстоянии является одним из первичных свойств материи и что никакое объяснение не может быть более понятным, чем этот факт. Поэтому волновая теория света встретила такое большое сопротивление, направленное не против её неспособности объяснить явления, но против её предположения о существовании среды, в которой распространяется свет.