Чтение онлайн

на главную

Жанры

Трактат об электричестве и магнетизме. Том 2.
Шрифт:

Однако дуальность заведомо должно быть соблюдена при чисто абстрактном использовании магнитных зарядов, основанном на переопределении токовых источников поля по правилам : m=-div M, где M - вектор намагничения, отыскиваемый как одно из возможных решений интегрального уравнения вида

m

=

1

2c

V

j

e

пр

x

rdV

=

V

M

dV

,

что отвечает двум рецептам введения магнитного момента: для системы токов

и для системы зарядов.

Таким образом, в выражении (С) нет излишеств, но приведено одновременно два выражения для силы, действующей на токи или на магнитные заряды в зависимости от предпочитаемого описания фактических источников магнитного поля. Однако, строго говоря, при зарядовом описании в уравнение (С) должен быть введён ещё один член, связанный с появлением магнитных токов. Действительно, по смыслу введения магнитных зарядов в уравнения поля как источников этого поля (фиктивных или реальных) они должны удовлетворять закону сохранения, и, значит, любое изменение во времени плотности m сопровождается подтеканием или оттеканием магнитного тока (фиктивного или реального) с плотностью jm:

div

j

m

=-

m

t

.

(10)

Уравнение непрерывности (10) двойственно (je– >jm, e– >m) уравнению непрерывности (7). И потому последовательный учёт принципа двойственности в задаче о механическом действии электромагнитного поля на источники (строго говоря, конечно, на «носители источников») должен в общем случае дополнить (С) членом

1

c

j

m

x

D

.

И, наконец, последнее замечание, также относящееся к выражению (С). В той части силы, которая определяет воздействие поля на токи (строго говоря, конечно, на носители токов), Максвелл оперирует не с током проводимости, а с истинным током, дополнительно содержащим ещё и ток смещения. Это отличает соотношение (С) от используемого нами теперь. Разница обусловлена несколько иным определением понятия силы (во-первых) и отсутствием ещё одного члена, двойственного члену с электрическим током смещения (во-вторых). Поскольку вопрос представляет не только исторический интерес, остановимся на нём подробнее. Без ущемления сути дела в целях сокращения формул положим сразу =1, =1, т.е. будем рассматривать силы, действующие на заряды и токи в вакууме.

Закон сохранения импульса в этом случае принимает вид

div T

g

t

=

f

мех

,

(11)

где

f

мех

=

e

E

+

1

c

j

e

пр

x

H

,

g

=

1

4c

E

x

H

,

T

– >

T

=

1

4

(E

E

+H

H

)

1

8

(E^2+H^2)

.

Здесь g - плотность электромагнитного импульса, T– тензор напряжения, дающий поток импульса (втекающий, а не вытекающий, внутрь объёма, где находятся источники - отсюда и различие в знаках по сравнению с обычной записью законов сохранения). Соотношение (11) может быть переписано в несколько ином виде, если ввести понятие «обобщённой» силы, включающей в себя наряду с обычной механической (по нашей терминологии - лоренцовой) силой ещё и изменение электромагнитного импульса

div T

=

f

=

f

мех

+

g

t

=

=

e

E

1

c

j

e

пр

x

H

+

1

c

j

e

см

x

H

+

1

4c

E

x

H

t

.

(12)

Сравнивая выражение для f в (12) с максвелловской формулой (С) (где для однозначности подхода нужно сразу же положить m), нетрудно обнаружить, что они отличаются только наличием дополнительного члена в (12)

1

4c

E

x

H

t

=-

1

c

j

m

см

x

E

,

(13)

которому может быть придан вид, сходный с лоренцовым, если ввести условно «магнитный ток смещения»:

j

m

см

=

1

4

H

t

.

Следовательно, формулы (11) или (12) допускают такую дуально симметричную запись:

div T

=

f

=

e

E

+

m

H

+

1

c

j

m

пол

x

H

1

c

j

e

пол

x

E

.

Причина отсутствия у Максвелла добавочного члена (13) отчасти раскрывается в п. 641-643, где он выводит выражение для механической силы, дифференцируя тензор напряжений (его магнитную часть), и проводит соответствующие обобщения на переменные во времени процессы. Воспроизведём это вычисление в наших обозначениях. Если в магнитостатике задан тензор

T

m

=

1

4

H

H

1

4

H^2

,

то его дивергенция равна

T

m

x

=

1

4

x

H

H

1

8

x

H^2

=

Поделиться:
Популярные книги

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Свои чужие

Джокер Ольга
2. Не родные
Любовные романы:
современные любовные романы
6.71
рейтинг книги
Свои чужие

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Идущий в тени 3

Амврелий Марк
3. Идущий в тени
Фантастика:
боевая фантастика
6.36
рейтинг книги
Идущий в тени 3

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3