Трехмерный мир. Евклид. Геометрия
Шрифт:
Если в прямоугольном треугольнике из прямого угла к основанию проведен перпендикуляр, то треугольники при перпендикуляре подобны и целому, и между собой.
МЕТОД ИСЧЕРПЫВАНИЯ
У теории отношений открылся огромный — и неожиданный, что говорит о гениальности Евдокса,— математический потенциал для определения площадей и объемов. Для этого метод танграма должен был применяться до бесконечности, что невозможно из-за наложенного Аристотелем ограничения. Следовательно, необходимо
Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.
S1/S2– d12/d22
Книга XII, предложение 7. Всякая призма, имеющая треугольное основание, разделяется на три равные друг другу пирамиды, имеющие треугольные основания.
P1/П1 = 1/3
Книга XII, предложение 18. Сферы находятся друг к другу в тройном отношении собственных диаметров.
Е1/Е1 = d13/d23
АРХИМЕД И КВАДРАТУРА ПАРАБОЛЫ
Рассмотрим, как Архимед использовал метод исчерпывания для решения задачи о квадратуре параболы. В некотором смысле оно похоже на решение задачи о квадратуре круга, предложенное Евклидом. Его основная цель — вписать в площадь параболы треугольники и сложить их площади, уже известные нам. Архимед писал:
Квадратура параболы. Площадь сегмента параболы относится к площади вписанного в нее треугольника как один к трем.
Рассмотрим треугольник АСВ, вписанный в сегмент параболы ADCEBA, где вершина С — точка, через которую проходит касательная к параболе, параллельная хорде АВ. В этом случае Архимед утверждал, что площадь S (ADCEBA) равна 4/3 площади треугольника Т = АСВ. То есть
S(ADCEBA) = 4/3 x S(ABC) = 4/3 х Т,
Теперь мы должны вписать в оставшиеся сегменты параболы треугольники Т1 = ADC, Т2 = ВЕС и сегменты ADA, DCD, СЕС, ВЕВ и так до бесконечности, поскольку величины делимы до бесконечности. Все это бесконечное множество треугольников покрывает площадь, равную трети треугольника Т=АСВ. Тем не менее прибегать к бесконечному необязательно, так как мы можем воспользоваться методом исчерпывания. Можно убедиться с помощью танграма, что треугольники Т1 = ADC и Т2 = ВЕС «покрывают соответственно больше половины сегментов параболы ADCA и ВЕСВ». Очевидно, что площадь треугольника T1=ADC равна половине прямоугольника АН. При этом сегмент параболы ADCEBA меньше этого прямоугольника.
Следовательно,
Однако полностью потенциал этого метода раскрыл Архимед, самый выдающийся математик античности.
Евклид дает следующее определение методу исчерпывания:
Книга X, предложение 1. Для двух заданных неравных величину если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины.
Это предложение равнозначно определению 4 книги V: если верно одно, то верно и другое, и наоборот. Архимед обратил на это внимание и решил ввести предложение в ранг постулата, который сегодня известен как принцип (или аксиома, или свойство) Архимеда.
Принцип Архимеда. Если имеются две величины одного порядка А и Bf то всегда существует натуральное число пу при котором п х А > В или п х В > А.
Доказав предложение 7 книги XII, Евклид решил задачу расчета объема пирамиды, унаследованную от египетских математиков. Вопрос о возможности ее решения с помощью метода танграма стоял на третьем месте в составленном Давидом Гильбертом в начале прошлого века списке из 23 задач, представляющих особый интерес для математики. Ответ, разумеется, был отрицательным. А предложение 2 дает ответ на один из важнейших вопросов классической геометрии, которому и посвящена следующая глава.
ГЛАВА 6
Квадратура круга
Одним из главных достижений пифагорейской школы было открытие возможности построить квадратуру любой многосторонней плоской фигуры. Но было ли это справедливо для круга и других фигур с одной или всеми изогнутыми сторонами? Этот вопрос занимал не только математиков, но и мыслителей, и со временем выражение «квадратура круга» стало синонимом неразрешимой задачи.
Метод танграма позволяет построить квадратуру любой многосторонней плоской фигуры. Вследствие любви к обобщению древнегреческие геометры задавались вопросом: можно ли свести к квадрату фигуры с округленными сторонами и, в частности, идеальную фигуру — круг? Первым к решению этой задачи приступил гениальный математик Гиппократ Хиосский. Он разработал серповидные фигуры (гиппократовы луночки): одну над окружностью, другую — над меньшей частью окружности и еще одну — над ее большей частью. Для доказательства, основанного на методе танграма, Гиппократу были необходимы два результата: