Чтение онлайн

на главную - закладки

Жанры

Трехмерный мир. Евклид. Геометрия
Шрифт:

Если в прямоугольном треугольнике из прямого угла к основанию проведен перпендикуляр, то треугольники при перпендикуляре подобны и целому, и между собой.

МЕТОД ИСЧЕРПЫВАНИЯ

У теории отношений открылся огромный — и неожиданный, что говорит о гениальности Евдокса,— математический потенциал для определения площадей и объемов. Для этого метод танграма должен был применяться до бесконечности, что невозможно из-за наложенного Аристотелем ограничения. Следовательно, необходимо

прибегать к двойному методу доведения до абсурда — в XVII веке его назвали методом исчерпывания. Евклид использовал его для доказательства следующих предложений.

Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.

S1/S2– d12/d22

Книга XII, предложение 7. Всякая призма, имеющая треугольное основание, разделяется на три равные друг другу пирамиды, имеющие треугольные основания.

P11 = 1/3

Книга XII, предложение 18. Сферы находятся друг к другу в тройном отношении собственных диаметров.

Е11 = d13/d23

АРХИМЕД И КВАДРАТУРА ПАРАБОЛЫ

Рассмотрим, как Архимед использовал метод исчерпывания для решения задачи о квадратуре параболы. В некотором смысле оно похоже на решение задачи о квадратуре круга, предложенное Евклидом. Его основная цель — вписать в площадь параболы треугольники и сложить их площади, уже известные нам. Архимед писал:

Квадратура параболы. Площадь сегмента параболы относится к площади вписанного в нее треугольника как один к трем.

Рассмотрим треугольник АСВ, вписанный в сегмент параболы ADCEBA, где вершина С — точка, через которую проходит касательная к параболе, параллельная хорде АВ. В этом случае Архимед утверждал, что площадь S (ADCEBA) равна 4/3 площади треугольника Т = АСВ. То есть

S(ADCEBA) = 4/3 x S(ABC) = 4/3 х Т,

Теперь мы должны вписать в оставшиеся сегменты параболы треугольники Т1 = ADC, Т2 = ВЕС и сегменты ADA, DCD, СЕС, ВЕВ и так до бесконечности, поскольку величины делимы до бесконечности. Все это бесконечное множество треугольников покрывает площадь, равную трети треугольника Т=АСВ. Тем не менее прибегать к бесконечному необязательно, так как мы можем воспользоваться методом исчерпывания. Можно убедиться с помощью танграма, что треугольники Т1 = ADC и Т2 = ВЕС «покрывают соответственно больше половины сегментов параболы ADCA и ВЕСВ». Очевидно, что площадь треугольника T1=ADC равна половине прямоугольника АН. При этом сегмент параболы ADCEBA меньше этого прямоугольника.

Следовательно,

Т1 = ADC покрывает больше половины сегмента ADCEBA. То же самое происходит с Т1 = ADC, сегментом параболы СЕВС и прямоугольником CF. Такой метод рассуждений справедлив последовательно для каждого остающегося сегмента параболы. Важно обратить внимание на то, что хотя в данном случае мы применили его к параболе, он работает и для других кривых, включая окружности.

Однако полностью потенциал этого метода раскрыл Архимед, самый выдающийся математик античности.

Евклид дает следующее определение методу исчерпывания:

Книга X, предложение 1. Для двух заданных неравных величину если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины.

Это предложение равнозначно определению 4 книги V: если верно одно, то верно и другое, и наоборот. Архимед обратил на это внимание и решил ввести предложение в ранг постулата, который сегодня известен как принцип (или аксиома, или свойство) Архимеда.

Принцип Архимеда. Если имеются две величины одного порядка А и Bf то всегда существует натуральное число пу при котором п х А > В или п х В > А.

Доказав предложение 7 книги XII, Евклид решил задачу расчета объема пирамиды, унаследованную от египетских математиков. Вопрос о возможности ее решения с помощью метода танграма стоял на третьем месте в составленном Давидом Гильбертом в начале прошлого века списке из 23 задач, представляющих особый интерес для математики. Ответ, разумеется, был отрицательным. А предложение 2 дает ответ на один из важнейших вопросов классической геометрии, которому и посвящена следующая глава.

ГЛАВА 6

Квадратура круга

Одним из главных достижений пифагорейской школы было открытие возможности построить квадратуру любой многосторонней плоской фигуры. Но было ли это справедливо для круга и других фигур с одной или всеми изогнутыми сторонами? Этот вопрос занимал не только математиков, но и мыслителей, и со временем выражение «квадратура круга» стало синонимом неразрешимой задачи.

Метод танграма позволяет построить квадратуру любой многосторонней плоской фигуры. Вследствие любви к обобщению древнегреческие геометры задавались вопросом: можно ли свести к квадрату фигуры с округленными сторонами и, в частности, идеальную фигуру — круг? Первым к решению этой задачи приступил гениальный математик Гиппократ Хиосский. Он разработал серповидные фигуры (гиппократовы луночки): одну над окружностью, другую — над меньшей частью окружности и еще одну — над ее большей частью. Для доказательства, основанного на методе танграма, Гиппократу были необходимы два результата:

Поделиться:
Популярные книги

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Второй Карибский кризис 1978

Арх Максим
11. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.80
рейтинг книги
Второй Карибский кризис 1978

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма