Трехмерный мир. Евклид. Геометрия
Шрифт:
— теорема Пифагора;
— доказательство того, что соотношение площадей двух окружностей равно соотношению квадратов их диаметров.
Маловероятно, что Гиппократ располагал этими доказательствами: скорее всего, он интуитивно догадался об их существовании. Сейчас мы подробно рассмотрим решение задачи квадратуры луночки над окружностью.
Рассмотрим дугу AGB, проведенную над стороной АВ квадрата ADEBy и полуокружность АСВ. Между ними находится луночка AGBCAy выделенная на рисунке 1 серым цветом. Докажем, что ее площадь равна площади равнобедренного АСВ. Луночка состоит из треугольника АСВ за вычетом сегмента S плюс два равных сегмента S1 и S2:
площадь AGBCA =
Так Гиппократ применяет метод танграма. Все сводится, следовательно, к доказательству того, что S = S1 + S2. Из теоремы Пифагора мы знаем, что
АВ^2 = АС^2 + СВ^2. (*)
РИС. 1
Теперь достаточно объединить площади поверхностей S с указанными выше квадратами. Как мы уже сказали, Гиппократ предполагал, что круги относятся друг к другу как квадраты их диаметров, то есть выполняется соотношение
S/АВ2 = S1/AC^2 = S2/CB^2
Следовательно,
S/AB^2 = (S1 + S2)/(АС^2 + СВ^2)
(исходя из предложения 12 книги V). Согласно (*) получается, что S = S1 +S2. Действительно, очень изящное доказательство! Так была открыта дорога к решению задачи о квадратуре круга.
БЕСКОНЕЧНЫЙ РЯД
Древнегреческие софисты Антифонт (480-411 до н. э.) и Брисон (ок. V века до н. э.) также занимались вопросом квадратуры круга и пришли к простому и бесспорному на первый взгляд выводу. Они предлагали описать круг методом приближения вписанных в него (Брисон добавлял — и описанных) многоугольников, построенных путем разделения пополам каждой стороны круга, то есть переходя от квадрата к восьмиугольнику, 16-угольнику и так далее. Таким образом можно получить последовательность плоских прямоугольных фигур, которые содержат в себе круг (см. рисунок 2). Вписывая в него и описывая вокруг него квадрат, 8-, 16-угольник и так далее, мы получаем последовательность плоских прямоугольных фигур, содержащих круг, причем все они сводимы к квадрату:
P4 < P8 < P16 < ... < 2n <···< 2n <···< 16 < 8 < 4.
РИС. 2
Но есть ли гарантия, что все фигуры этого бесконечного ряда будут сводимы к квадрату? Напомним, что Аристотель запретил прибегать к понятию бесконечности — чтобы сделать невозможными подобные рассуждения. Рассмотрим следующее предложение, явно неверное:
Две стороны треугольника равны по длине третьей стороне (рисунок 3 на следующей странице).
Мы видим, что длина отрезков, составляющих ломаную линию, идущую от точки А до точки В, равна сумме длин сторон АС и СВ: АС + СВ = АС1 + С1А1 + А1С"1 + С'1В.
Если
РИС. 3
ПЛОЩАДЬ КРУГА В НАЧАЛАХ»
Евклид открывает книгу XII двумя предложениями, которые устанавливают одну и ту же теорему для правильных многоугольников, вписанных в круг, и для круга.
Книга XII, предложение 1. Подобные многоугольники, вписанные в круги, будут относиться друг к другу как квадраты диаметров этих кругов.
Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.
Первое предложение является прямым следствием теоремы Фалеса применительно к площадям, поскольку достаточно убедиться, что каждый из центральных треугольников, на которые раскладываются правильные многоугольники, подтверждает теорему Фалеса. Второе можно было бы доказать методом бесконечного ряда, но рассуждения, в которых используется понятие бесконечности, были неприемлемы для древнегреческих ученых (хотя в этом случае это было бы правильно). Евклид мог бы довести до предела предложение 2 книги XII таким образом: если для каждого многоугольника п вида п=2k справедливо соотношение
Р1n/d21 = Р2n/d22
и в самом крайнем случае Р1n равно S1 а Р2n равно S2 то есть от многоугольника переходим к кругу и получаем:
S1/d21 = S2/d22
Ч.Т.Д.
РИС. 4
Правильные многоугольники с 4,8,16,... сторонами все больше заполняют площадь круга.
Отказавшись от предела последовательности, нам остается только применить метод исчерпывания, то есть доказать, что квадрат, вписанный в круг, покрывает больше половины его площади. Если мы добавим треугольники, чтобы получить из квадрата восьмиугольник, получится больше половины площади, оставшейся после того, как мы уберем треугольник, и так далее. В какой-то момент вписанная в круг S многосторонняя фигура Р2k заполнит его так, что оставшееся пространство будет меньше любой другой предыдущей фигуры (см. рисунок 4).
Обратим внимание, что аналогично сказанному в предыдущей главе касательно сегмента параболы равнобедренный треугольник, который мы добавили к каждой стороне квадрата, чтобы получить восьмиугольник, покрывал более половины сегмента окружности, то есть четверть того, что остается от круга, когда мы убираем вписанный квадрат. Затем мы применили те же самые рассуждения к равнобедренным треугольникам, которые строятся на сторонах правильного восьмиугольника, чтобы получить 16-угольник, и так далее. Каждый раз фигуры покрывают более половины, что и необходимо для применения метода исчерпывания.