Чтение онлайн

на главную - закладки

Жанры

Тринадцать вещей, в которых нет ни малейшего смысла
Шрифт:

Это противоречило всему, что отстаивали исследователи нематод, дрозофил и мышей-«мафусаилов». Да как только этому Хейфлику могло прийти в голову, при всех-то полученных доказательствах, что старение нельзя прекратить? Ответ заключался в его самом знаменитом открытии: так называемом пределе Хейфлика.

В октябре 1951 года биолог Джордж Гей, выступив по национальному телевидению США, возвестил начало новой эры в медицинской науке. Гей с женой Маргарет работал в Университете Джонса Хопкинса, руководя цитологической лабораторией. Два десятка лет они посвятили поискам человеческой клетки, способной к вечной жизни in vitro: такие свойства могли

послужить эффективным средством против рака. Когда же 31-летняя женщина по имени Генриетта Лакс, заболев раком шейки матки, подверглась биопсии, супруги наконец получили то, что искали. Джордж Гей продемонстрировал перед камерами пробирку с клеточной культурой, взятой из опухоли Генриетты Лакс, — самым продуктивным и притом абсолютно здоровым материалом из всех, какие когда-либо наблюдали биологи. «Возможно, дальнейшие фундаментальные исследования в начатом нами направлении, — заявил Гей, — проложат дорогу к полному уничтожению рака».

Генриетта Лаке скончалась от болезни как раз в тот самый день. Но и рак лишился в одночасье зловещей ауры непобедимости; на завершение борьбы были брошены огромные ресурсы. Наследие Лакс — линия клеточных культур, названная в ее честь HeLa, — стало еще одной «рабочей лошадкой» биологии. Ее клетки помогали создавать вакцину против полиомиелита, тестировались на атомных полигонах и даже слетали в космос на шаттле. Они и сейчас продолжают размножаться в лабораториях по всему миру (совокупность клеток HeLa уже превысила прижизненную массу тела «прародительницы»); но главное свершение, вероятно, еще впереди. За пятьдесят с лишним лет, минувших со смерти Генриетты, исследователи выявили многочисленные взаимосвязи между опухолевыми заболеваниями, бессмертными клетками и… старением. Судя по всему, самое важное открытие в этой области было сделано в лаборатории Леонарда Хейфлика.

В начале 1960-х, исследуя механизмы развития рака, он обнаружил, что нормальная клетка способна разделиться не больше чем примерно пятьдесят раз: в засеянных культурах количество клеток за десять месяцев увеличивалось вдвое, а затем клетки неожиданно погибали. Удивленный и заинтригованный Хейфлик с ассистентом Полом Мурхедом успешно повторил опыты, после чего отправил нескольким коллегам-скептикам образцы с указанием дня и часа, когда клетки начнут гибнуть. «Нашим предсказаниям, разумеется, никто не поверил, но как только телефон стал разрываться от добрых вестей — образцы перемерли точно в срок, — мы решили не медлить с объявлением», — вспоминал впоследствии Хейфлик.

Открытое им явление получило известность как репликативное старение клеток. Самое любопытное в этом процессе — его эволюционный возраст: репликативное старение существует больше миллиарда лет; оно проявляется совершенно одинаковым образом у дрожжевых грибков и в некоторых клетках человеческого организма. Скажем, образцы наших фибробластов — соединительной ткани, помогающей, в частности, заживлению ран, — можно некоторое время успешно размножать в чашке Петри. Но затем неизбежно наступит момент, когда они прекратят делиться и умрут.

Отчего так? Это, по всем признакам, связано с повреждениями ДНК, содержащейся в клеточных ядрах. «Часовым механизмом» старения наших клеток служат тело-меры — вереницы повторяющихся последовательностей кислотных молекул на концевых участках всех хромосом. Теломеры не дают хромосомам «склеиваться» друг с другом, но при каждом очередном делении клетки они воспроизводятся в неполном, укороченном виде. В итоге, когда теломеры достигают определенной степени износа, клетка погибает. Точные подробности этой механики неизвестны, но она играет ведущую роль в борьбе против рака.

Соблазн состоит в том, что ученые знают способ воспрепятствовать репликативному старению. Раковые клетки содержат специальный фермент теломеразу, который достраивает теломеры до полной

длины в каждом репликативном цикле. Это позволяет клеткам делиться без удержу, из-за чего злокачественные опухоли прогрессируют так стремительно. Укорачивания теломер можно избежать, если здоровые клетки будут сами синтезировать теломеразу. А они это могут.

В начале 1998 года научно-исследовательская группа корпорации «Джерон» из Кремниевой долины под руководством Андреа Боднар сообщила о результатах имплантации в человеческую клетку гена, инициирующего синтез теломеразы. На момент публикации в журнале «Сайенс» подопытные клеточные культуры, прожив вдвое дольше контрольных, по всем характеристикам выглядели как свежие. Словно собственное производство теломеразы избавило их от проклятья репликативного старения и наделило полным бессмертием.

Да только ни одно мыслящее существо не захочет бессмертных клеток в собственном теле: ведь они почти наверняка будут стремиться разрастись в опухоль. Таким образом, укорачивание теломер обременяет нас старостью, но дает взамен защиту от рака. Это относится и к другой форме программируемой клеточной смерти: апоптозу.

Апоптоз проявляется как реакция на химические сигналы. Вирусная инфекция, механическое повреждение или обычный стресс организма стимулируют каскад сигналов, воздействующих на секрецию гормонов роста или снабжение клетки кислородом. Все эти факторы могут дать ей команду умереть: ферменты, называемые каспазами, инициируют разрушительный процесс, и в результате клетка как бы удушает и пожирает сама себя. Вместе с тем апоптоз — одна из важнейших основ онтогенетического развития: без него, например, на конечностях эмбриона не обособятся пальцы. Но если процесс нарушается, позволяя клеткам жить вечно, это может вызвать рак.

Тактическая задача онкологов гораздо сложнее, чем получение вечно живой клетки. Где-то совсем близко кроется дразнящая тайна. «Возможно, всего лишь в одном шаге от проклятья неумирающих раковых клеток, — писали авторы обзорной статьи о раке и старении в августовском выпуске „Нейчур“ 2007 года, — лежит разгадка всех проблем постижения и продления сроков нашей жизни». Но обольщаться насчет панацеи пока рано: что касается глубинных механизмов рака и старения, констатируют авторы, «большинство фундаментальных вопросов не находят ответов».

Итак, в нашем распоряжении остаются две жизнеспособных, но противоречащих друг другу теории старения. По одной процессами старения управляет «генный переключатель», который мог развиться только вследствие репродуктивного обмена. Согласно другой — для единомышленников Хейфлика — старение это просто результат накопления дефектов. Клетки изнашиваются и гибнут из-за повторяющихся сбоев в ремонте и окончательной деградации. То есть дело не в генетике, а в неумолимом беге времени.

Кто же прав? Если строго придерживаться научных фактов — ни один из двух станов. Множество данных опровергают сразу обе теории.

Прежде всего, дрозофилы. Когда Майкл Роуз из Калифорнийского университета в Ирвайне вывел в 1980 году долгоживущую генетическую линию этих мушек, фертильность у них оказалась пониженной. Типичный, казалось бы, добротный пример антагонистической плейотропии: «плюс долговечность» дает «минус плодовитость». Но поскольку мухи жили, а стало быть, размножались дольше обыкновенных сородичей, то очень скоро выяснилось, что и приплод у них статистически выше нормы. Превысив на 81 процент среднюю продолжительность жизни контрольных особей, подопытная группа за этот срок произвела на 20 процентов больше потомства. И это не единственный подтвержденный факт подобной аномалии. Кен Спитц в университете Майами также вывел блох, сочетавших долговечность с плодовитостью. С позиций генетической теории старения такого просто не должно быть.

Поделиться:
Популярные книги

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Господин следователь. Книга 4

Шалашов Евгений Васильевич
4. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 4

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Новый Рал 4

Северный Лис
4. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 4

Черный дембель. Часть 5

Федин Андрей Анатольевич
5. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 5

Первый среди равных. Книга III

Бор Жорж
3. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
6.00
рейтинг книги
Первый среди равных. Книга III

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

(не)Бальмануг.Дочь

Лашина Полина
7. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(не)Бальмануг.Дочь

Бальмануг. (не) Баронесса

Лашина Полина
1. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (не) Баронесса

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Мифы и Легенды. Тетралогия

Карелин Сергей Витальевич
Мифы и Легенды
Фантастика:
фэнтези
рпг
альтернативная история
5.00
рейтинг книги
Мифы и Легенды. Тетралогия