Чтение онлайн

на главную

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

Существует два основных правила остановки работы сети с циклами. Первое правило состоит в остановке работы сети после указанного числа срабатываний каждого элемента. Циклы с таким правилом остановки будем называть ограниченными.

Второе правило остановки работы сети — сеть прекращает работу после установления равновесного распределения сигналов в цикле. Такие сети будем называть равновесными. Примером равновесной сети может служить сеть Хопфилда [312] (см. разд. «Сети Хопфилда»).

Архитектуры сетей

Как

уже отмечалось ранее, при конструировании сетей из элементов можно построить сеть любой архитектуры. Однако и при произвольном конструировании можно выделить наиболее общие признаки, существенно отличающие одну сеть от другой. Очевидно, что замена простого сумматора на адаптивный или даже на квадратичный не приведут к существенному изменению структуры сети, хотя число обучаемых параметров увеличится. Однако, введение в сеть цикла сильно изменяет как структуру сети, так и ее поведение. Таким образом можно все сети разбить на два сильно отличающихся класса: ациклические сети и сети с циклами. Среди сетей с циклами существует еще одно разделение, сильно влияющее на способ функционирования сети: равновесные сети с циклами и сети с ограниченными циклами.

Большинство используемых сетей не позволяют определить, как повлияет изменение какого-либо внутреннего параметра сети на выходной сигнал. На рис. 13 приведен пример сети, в которой увеличение параметра α приводит к неоднозначному влиянию на сигнал x2: при отрицательных x1 произойдет уменьшение x2, а при положительных x1 — увеличение. Таким образом, выходной сигнал такой сети немонотонно зависит от параметра α. Для получения монотонной зависимости выходных сигналов сети от параметров внутренних слоев (то есть всех слоев кроме входного) необходимо использовать специальную монотонную архитектуру нейронной сети. Принципиальная схема сетей монотонной архитектуры приведена на рис. 14.

Основная идея построения монотонных сетей состоит в разделении каждого слоя сети на два — возбуждающий и тормозящий. При этом все связи в сети устроены так, что элементы возбуждающей части слоя возбуждают элементы возбуждающей части следующего слоя и тормозят тормозящие элементы следующего слоя. Аналогично, тормозящие элементы возбуждают тормозящие элементы и тормозят возбуждающие элементы следующего слоя. Названия «тормозящий» и «возбуждающий» относятся к влиянию элементов обеих частей на выходные элементы.

Отметим, что для сетей с сигмоидными элементами требование монотонности означает, что веса всех связей должны быть неотрицательны. Для сетей с Паде элементами требование не отрицательности весов связей является необходимым условием бессбойной работы. Требование монотонности для сетей с Паде элементами приводит к изменению архитектуры сети, не накладывая никаких новых ограничений на параметры сети. На рис. 15 приведены пример немонотонной сети, а на рис. 16 монотонной сети с Паде элементами.

Особо отметим архитектуру еще одного класса сетей — сетей без весов связей. Эти сети, в противовес коннекционистским, не имеют обучаемых параметров связей. Любую сеть можно превратить в сеть без весов связей заменой всех синапсов на умножители. Легко заметить, что получится такая же сеть, только вместо весов связей будут использоваться сигналы.

Таким образом в сетях без весов связей выходные сигналы одного слоя могут служить для следующего слоя как входными сигналами, так и весами связей. Заметим, что вся память таких сетей содержится в значениях параметров нелинейных преобразователей. Из разделов «Синапс» и «Умножитель» следует, что сети без весов связей способны вычислять градиент функции оценки и затрачивают на это ровно тоже время, что и аналогичная сеть с весами связей.

Модификация синаптической карты (обучение)

Кроме прямого и обратного функционирования, все элементы должны уметь выполнять еще одну операцию — модификацию параметров. Процедура модификации параметров состоит в добавлении к существующим параметрам вычисленных поправок (напомним, что для сетей с непрерывно дифференцируемыми элементами вектор поправок является градиентом некоторой функции от выходных сигналов). Если обозначить текущий параметр элемента черезα, а вычисленную поправку через Δα, то новое значение параметра вычисляется по формуле α'=h1α+h2Δα.

Параметры обучения h1 и h2 определяются компонентом учитель и передаются сети вместе с запросом на обучение. В некоторых случаях бывает полезно использовать более сложную процедуру модификации карты.

Во многих работах отмечается, что при описанной выше процедуре модификации параметров происходит неограниченный рост величин параметров. Существует несколько различных методов решения этой проблемы. Наиболее простым является жесткое ограничение величин параметров некоторыми минимальным и максимальным значениями. При использовании этого метода процедура модификации параметров имеет следующий вид:

Контрастирование и нормализация сети

В последние годы широкое распространение получили различные методы контрастирования или скелетонизации нейронных сетей. В ходе процедуры контрастирования достигается высокая степень разреженности синаптической карты нейронной сети, так как большинство связей получают нулевые веса (см. например [47, 100, 303, 304]).

Очевидно, что при такой степени разреженности ненулевых параметров проводить вычисления так, как будто структура сети не изменилась, неэффективно. Возникает потребность в процедуре нормализации сети, то есть фактического удаления нулевых связей из сети, а не только из обучения. Процедура нормализации состоит из двух этапов:

1. Из сети удаляются все связи, имеющие нулевые веса и исключенные из обучения.

2. Из сети удаляются все подсети, выходные сигналы которых не используются другими подсетями в качестве входных сигналов и не являются выходными сигналами сети в целом.

В ходе нормализации возникает одна трудность: если при описании нейронной сети все нейроны одинаковы, и можно описать нейрон один раз, то после удаления отконтрастированных связей нейроны обычно имеют различную структуру. Компонент сеть должен отслеживать ситуации, когда два блока исходно одного и того же типа уже не могут быть представлены в виде этого блока с различными параметрами. В этих случаях компонент сеть порождает новый тип блока. Правила порождения имен блоков приведены в описании выполнения запроса на нормализацию сети.

Поделиться:
Популярные книги

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Кремлевские звезды

Ромов Дмитрий
6. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кремлевские звезды

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб