Удивительная палеонтология. История земли и жизни на ней
Шрифт:
Итак, Эйгену «всего-навсего» осталось найти реальный класс химических реакций, компоненты которых вели бы себя подобно дарвиновским видам, т.е. обладали бы способностью «отбираться» и, соответственно, эволюционировать в сторону увеличения сложности организации. Именно такими свойствами, как выяснилось, и обладают нелинейные автокаталитические цепи, названные Эйгеном гиперциклами. Здесь необходимо дать некоторые пояснения.
Простейшим случаем каталитической реакции является превращение исходного вещества (субстрат – S) в конечное (продукт – P) при участии единственного фермента (E); уже этот механизм требует по меньшей мере трехчленного цикла, который называется реакционным (рис. 14,а). Существуют, однако, и гораздо более сложные реакционные циклы. Таков, например, цикл Кребса – 12-членный цикл, лежащий в основе клеточного
Следующий за реакционным циклом уровень организации представляет собой каталитический цикл, в котором некоторые (или все) интермедиаты сами являются катализаторами для одной из последующих реакций. Каждый из них (Ei+1) образуется из высокоэнергетического субстрата (S) при каталитической поддержке от предыдущего интермедиата (Ei) (рис. 14,г). Таким образом, каталитический цикл как целое эквивалентен автокатализатору. Если же такие автокаталитические (т.е. самовоспроизводящиеся) единицы оказываются, в свою очередь, сочленены между собой посредством циклической связи, то возникает каталитический гиперцикл. Следовательно, гиперцикл основан на нелинейном автокатализе (автокатализе как минимум второго порядка) и представляет собой следующий, более высокий уровень в иерархии автокаталитических систем. Он состоит из самоинструктирующихся единиц (Ii) с двойными каталитическими функциями: в качестве автокатализатора интермедиат Ii способен инструктировать свое собственное воспроизведение; и при этом он катализирует воспроизведение из высокоэнергетического субстрата (S) следующего в цепи интермедиата (Ii+1) (рис. 14,д).
Гиперциклы (одним из простейших примеров которых является размножение РНК-содержащего вируса в бактериальной клетке) обладают рядом уникальных свойств, порождающих дарвиновское поведение системы. Гиперцикл конкурирует (и даже более ожесточенно, чем дарвиновские виды) с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами, если только не объединен с ними в автокаталитический цикл следующего, более высокого порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от «предков» к «потомкам»), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.
Итак, именно гиперцикл (который сам по себе есть еще чистая химия) является тем критическим уровнем, начиная с которого сложность неймановского «самовоспроизводящегося автомата» перестает быть вырождающейся. Эта концепция, в частности, вполне удовлетворительно описывает возникновение на основе взаимного катализа системы «нуклеиновая кислота – белок» (решающее событие в процессе возникновения жизни на Земле). Вместе с тем сам Эйген подчеркивает, что в ходе реальной эволюции гиперцикл вполне мог «вымереть» – после того, как ферментные системы следующего поколения (с более высокой точностью репродукции) сумели индивидуализировать интегральную систему в форме клетки.
Однако на процесс возникновения жизни можно посмотреть и с несколько иной позиции, не биохимической, а геохимической, как это делает, например, А.С. Раутиан (1995). Мы уже говорили о том, что с общепланетарной точки зрения жизнь – это способ упорядочения и стабилизации геохимических круговоротов. Откуда же берется сам геохимический круговорот?
Открытый космос холоден (лишь на 4°С теплее абсолютного нуля) потому, что концентрация вещества в нем ничтожно мала (3 · 10–31 г/см3) и звездам просто нечего нагревать. По этой же причине, кстати сказать, Вселенная прозрачна, и мы видим небесные светила. В то же время любая планета, будучи непрозрачной, аккумулирует часть энергии, излучаемой центральным светилом и нагревается. Тогда между нагретой планетой и холодным космосом возникает температурный градиент (ТГ). Если планета обладает достаточно подвижной газообразной и/или жидкой оболочкой (атмосферой и/или гидросферой), то ТГ обязательно порождает в ней (просто за счет конвекции) физико-химический круговорот. В этот круговорот
Движущей силой геохимических круговоротов является в конечном счете энергия центрального светила в форме ТГ. Поэтому элементарные геохимические циклы (т.е. прообразы экосистем) существуют в условиях периодического падения поступающей в них энергии – в те моменты, когда они в результате вращения планеты оказываются на ее теневой стороне, где ТГ меньше. Эта ситуация неизбежно должна порождать отбор круговоротов на стабильность, т.е. на их способность поддерживать собственную структуру. Наиболее же стабильными окажутся те круговороты, которые «научатся» запасать энергию во время световой фазы цикла, с тем чтобы расходовать ее во время теневой. Другим параметром отбора круговоротов, очевидно, должно быть увеличение скорости оборота вовлеченного в них вещества; здесь выигрывать будут те из них, что обзаведутся наиболее эффективными катализаторами. В конкретных условиях Земли такого рода преимущества будут иметь те круговороты, которые происходят при участии высокомолекулярных соединений углерода.
Итак, жизнь в форме химической активности означенных соединений оказывается стабилизатором и катализатором уже существующих на планете геохимических циклов (включая глобальный); циклы при этом «крутятся» за счет внешнего источника энергии. Вам это ничего не напоминает? Ну конечно, это уже знакомая нам автокаталитическая система, которая, соответственно, обладает потенциальной способностью к саморазвитию и прежде всего к совершенствованию самих катализаторов-интермедиатов. Отсюда становится понятным парадоксальный вывод, к которому независимо друг от друга приходили такие исследователи, как Дж. Бернал (1969) и М. М. Камшилов (1972): жизнь как явление должна предшествовать появлению живых существ. Из такого подхода вполне очевидна принципиальная тщетность попыток синтезировать живое существо «в колбе», как это делали средневековые алхимики или сторонники классического абиогенеза: для такого синтеза как минимум нужна колба размером с планету.
Не менее замечательно и то, что происходит при этом с другим компонентом такой автокаталитической системы – самой планетой. Далее мы постоянно будем говорить о способности живых организмов кондиционировать (т.е. перестраивать в благоприятном для себя направлении) свою среду обитания. Рассмотрев это явление на планетарном уровне, Дж. Лавлок (1982) выдвинул свою концепцию Геи, согласно которой всякая обитаемая планета (именно планета как астрономическое тело!) в определенном смысле является живым объектом – Геей, названным так по имени древнегреческой богини, олицетворяющей Землю. Наиболее разработанной (в математическом отношении) из моделей Лавлока является «Маргаритковый Мир» (Daisyworld); методологически она сходна со знакомой вам по курсу экологии моделью Лотки – Вольтерры, описывающей поведение системы из двух взаимодействующих популяций – хищника и жертвы, и тоже является абстракцией, основанной на предельном упрощении.
Сначала, как водится, несколько пояснений. Система, находящаяся в состоянии динамического равновесия, испытывает различного рода внешние возмущения. Она может либо усиливать исходное возмущение, либо, напротив, гасить его; в этих случаях говорят о процессах, идущих, соответственно, с положительной или отрицательной обратной связью. Примером первого является наступление ледника: при понижении температуры часть осадков выпадает в виде снега и льда, в результате чего поверхность планеты начинает сильнее отражать солнечные лучи (увеличивается ее альбедо [10] ). Это вызывает дополнительное понижение температуры, в результате чего покрытая ледником площадь увеличивается, и т.д. Отрицательная же обратная связь работает, например, в упомянутой системе «хищник – жертва»: увеличение численности зайцев ведет к последующему усилению пресса хищников (лисы могут выкормить больше детенышей); в итоге численность обеих популяций колеблется вокруг неких средних значений. Этот тип обратной связи характерен прежде всего для высокоорганизованных систем, биологических и социальных; именно он превращает их в гомеостаты (гомеостазис – способность системы поддерживать свои параметры, например температуру тела, в определенных пределах, минимизируя воздействия отклоняющих факторов).
10
Альбедо – величина, характеризующая отражательную способность любой поверхности; выражается отношением отраженного потока лучистой энергии ко всему упавшему на поверхность потоку.
Итак, модель Лавлока. Гипотетическая планета, имеющая те же примерно параметры, что и Земля, вращается вокруг звезды того же спектрального класса, что и наше Солнце. Большую часть поверхности планеты занимает суша, которая повсеместно обводнена и допускает существование жизни. Планета называется Маргаритковый Мир, ибо единственная форма жизни на ней – маргаритки (Bellis) с темными и светлыми цветами (ТМ и СМ). Эти растения способны существовать в температурном диапазоне от 5 до 40°C, предпочитая температуру 20°C. Светимость местного Солнца, согласно одной из современных астрофизических гипотез, закономерно возрастает по мере его «старения», поэтому температура планетной поверхности вроде бы должна на протяжении всей ее истории увеличиваться, причем практически линейно.