Чтение онлайн

на главную

Жанры

Удивительная палеонтология. История земли и жизни на ней
Шрифт:

Глава 6

Поздний докембрий: возникновение многоклеточности. Гипотеза кислородного контроля. Эдиакарский эксперимент.

Прежде чем непосредственно приступать к изучению древнейших многоклеточных организмов, давайте задумаемся: а зачем, собственно говоря, эта многоклеточность нужна? Какие преимущества она дает? На эту проблему можно посмотреть с разных сторон. Начнем с экологической точки зрения: что многоклеточность дает не самому организму, а экосистеме и (в конечном счете) биосфере.

Малоразмерные фитопланктонные организмы (прежде всего прокариотные) сталкиваются с одной проблемой, на которую впервые обратил внимание гидробиолог Б. Я. Виленкин. Снабжение этих одноклеточных биогенами и растворенными газами происходит за счет диффузии сквозь клеточную стенку. Казалось бы, это должно благоприятствовать миниатюризации клеток,

максимальному увеличению отношения ее поверхности к объему. Однако очень мелкий организм неспособен выделиться из окружающей его водной массы. Пассивно паря в толще воды и оставаясь неподвижным относительно нее, он быстро создает вокруг себя «пустыню» – выедает из непосредственно окружающего его водного слоя все биогены, насыщая воду диффундирующей наружу органикой, которую не в силах удерживать внутри клетки из-за того же (высокого) соотношения «поверхность – объем». При этом безвозвратно теряется более 1/3 клеточной продукции. Но хуже то, что на окисление этой органики расходуется кислород и водный слой, окружающий организм, эвтрофицируется. Милый Пятачок прав: жизнь «очень маленького существа» полна неприятностей.

Организм избежит неприятностей, если будет перемещаться относительно вмещающей его воды. Этого он может добиться двумя способами: либо начнет сам активно двигаться в ее толще, либо прикрепится к неподвижному субстрату, чтобы вода двигалась относительно него. Второй способ прокариоты реализовали немедленно, сконструировав мат. А вот с первым способом (казалось бы, более простым и очевидным) у них возникли большие проблемы, ибо эффективных органов движения (подобных жгутикам и ресничкам эукариотных одноклеточных) у прокариот не возникает, а создание клеточных агрегаций, способных к согласованным движениям (например, волнообразным) затруднено из-за крайней слабости межклеточных взаимодействий (см. главу 5). Поэтому «генеральной линией» этот способ становится лишь при появлении эукариот, способных к образованию высокоинтегрированных клеточных агрегаций, т.е. к настоящей многоклеточности.

Многоклеточность привела, среди прочего, к резкому повышению способности организмов создавать в своем теле запас питательных веществ. Практически лишенные этих запасов одноклеточные (в особенности прокариоты) обречены реагировать на изменения содержания биогенов в окружающей среде единственным способом – изменением плотности популяций. (Примером такого их поведения может служить «цветение» водоемов, когда стремительное размножение одноклеточных и нитчатых водорослей быстро приводит к исчерпанию ресурса экосистемы; в результате безмерно разросшаяся популяция в одночасье вымирает, а на окисление этой мертвой органики расходуется затем почти весь кислород водоема – «замор».) Запасные вещества и резервная биомасса крупных организмов делают их популяции более независимыми от колебаний ресурса и стабилизируют их плотность. В свою очередь, существующие в экосистеме геохимические круговороты обретают в лице этих организмов крупное резервное депо [16] , оказывающее на все эти циклы мощное стабилизирующее воздействие. Такая «взаимная стабилизация» кажется одним из главных экологических следствий возникновения многоклеточных (хотя правильнее сказать – макроскопических, т.е. видимых невооруженным глазом) организмов.

16

Термин «депо» должен быть вам знаком по курсу анатомии. Например, печень является резервным депо питательных веществ (гликоген и др.), которые при необходимости могут быть мобилизованы организмом.

Последняя оговорка неслучайна. Если мы от вопроса «для чего возникла многоклеточность?» перейдем к вопросу «как и когда она возникла?», то нам прежде всего придется определить, какой организм следует считать многоклеточным. Если даже не брать в расчет чисто терминологические проблемы (следует ли называть «колонией» Volvox, у которого есть дифференциация между клетками переднего и заднего полушарий, зародыши, возникающие путем палинтомии – деления без последующего увеличения размеров клеток, и который к тому же смертен ), здесь существует и проблема вполне объективная. А именно: соответствует ли строгим критериям многоклеточности строение тела макроскопических водорослей и грибов? Большинство биологов ныне отвечают на этот вопрос отрицательно, оставляя термин «многоклеточные» лишь за зелеными растениями (Metaphyta) и животными (Metazoa); Дж. Корлисс (1983) ввел для этих двух групп удачный термин – многотканевые организмы.

Таким образом, достижение живыми организмами макроскопических размеров может происходить различными способами, а истиная многоклеточность (многотканевость) – лишь один из них. В любом случае, многоклеточность (в широком смысле) почти наверняка возникала в процессе эволюции многократно и независимо: во многих типах водорослей – красных (Rhodophyta), зеленых (Chlorophyta), золотистых (Chrysophyta) – или высших грибов-аскомицетов (Ascomyceta) можно выявить преемственные ряды от одноклеточных форм через колонии (например, нитчатые формы) к макроскопическим организмам с аналогами тканевой дифференцировки.

Эта гипотетическая эволюционная картина вполне соответствует современным палеонтологическим даным (рис. 19). Первые эукариоты появились (как мы знаем из главы 5) около 2 млрд лет назад среди фитопланктонных акритарх; вскоре к ним добавились и нитчатые формы с эукариотными параметрами клеток. Замечательно, что они никогда не встречаются в прокариотных бентосных сообществах (цианобактериальных матах), а с самого начала формируют свой собственный тип растительности, названный У. Шенборном (1987) «водорослевыми лугами». Ныне сообщества такого типа известны лишь в некоторых антарктических внутренних водоемах; в докембрии же они, судя по характеру осадков, были широко распространены в морях за пределами мелководий (которые были заняты матами).

В рифее (1,4–1,2 млрд лет назад) эти нитчатые эукариотные формы достигли значительного разнообразия. Именно тогда в составе водорослевых лугов появились и первые макроскопические водоросли с пластинчатым, корковым и кожистым типами слоевища, а к венду (650 млн лет) основным компонентом этих сообществ становятся вендотении – лентовидные водоросли длиной до 15 см. Есть даже сообщение о находке каких-то пластинчатых водорослей в китайской формации Чанчен с возрастом 1,8 млрд лет; эта датировка нуждается в подтверждении, но не кажется нереальной. Дело в том, что таксономическая принадлежность всех этих форм недостаточно ясна, однако некоторые из них очень сходны с низшими красными водорослями – бангиевыми. А красные водоросли, как полагают многие исследователи, являются самой архаичной ветвью эукариот; возможно, они произошли в результате «независимой эукариотизации» цианобактерий.

Рис. 19. Изменения во времени относительного обилия основных биотических компонентов: а – прокариоты-строматолитообразователи; б – свободноживущие прокариоты; в – эукариотный фитопланктон; г – многоклеточные растения; д – многоклеточные животные (по Schopf, 1992)

Животные и следы их жизнедеятельности (норки и следовые дорожки на поверхности осадка) достоверно появились в палеонтологической летописи лишь в конце протерозоя – около 800 млн лет назад. (Интересно, что водоросли с минерализованными слоевищами, для которых можно предполагать тот же уровень организации, что и у высших красных и бурых водорослей, появились еще позднее – в венде.) В чем же причина того, что истиная многоклеточность возникла так поздно? В 60-е годы прошлого века (вспомним главу 5) существовала гипотеза «кислородного контроля» Беркнера и Маршалла, согласно которой содержание кислорода в земной атмосфере вплоть до начала фанерозоя (540 млн лет назад) было ниже точки Пастера и не допускало существования более высоко организованных форм жизни, чем водоросли. Поскольку со временем установили, что точка Пастера в действительности была пройдена гораздо раньше – более чем за миллиард лет до времени появления первых многоклеточных, причинная связь между этими явлениями была отвергнута и о гипотезе «кислородного контроля» забыли. Как позже выяснилось, напрасно.

Однопроцентное содержание кислорода (имеется в виду 1% от его современного количества) – это тот критический минимум, ниже которого аэробный метаболизм принципиально невозможен; однако для жизнедеятельности макроскопических животных кислорода необходимо существенно больше. Б. Раннегар недавно провел специальные расчеты, из которых следует, что животным, составлявшим первую фауну многоклеточных – эдиакарскую (о ней речь впереди), кислорода требовалось не менее 6–10% от нынешнего уровня; это в том случае, если они имели развитую систему циркуляции, доставлявшую кислород к тканям. Если же такая система у них еще не развилась и они дышали за счет прямой диффузии (скорее всего, так и было), то требовалось для их жизнедеятельности гораздо больше кислорода (может быть, его содержание сопоставимо с нынешним). Итак, гипотеза «кислородного контроля» кажется вполне логичным объяснением появления макроскопических животных лишь в конце протерозоя – если принять более высокий критический порог, чем однопроцентный, предлагавшийся Беркнером и Маршаллом. Однако возможна ли проверка этой гипотезы? Мы помним (из главы 5), что можно по составу осадков отличить аэробные обстановки от анаэробных, но как определить количественные различия в содержании кислорода в былые эпохи?

Поделиться:
Популярные книги

Императорский отбор

Свободина Виктория
Фантастика:
фэнтези
8.56
рейтинг книги
Императорский отбор

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Не ангел хранитель

Рам Янка
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Не ангел хранитель

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Райнера: Сила души

Макушева Магда
3. Райнера
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Райнера: Сила души

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража