Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Значения PageRank после одного обновления
В последующих кругах правило обновления остается прежним. Если обозначить через x, y, z текущий счет страниц X, Y и Z, то в результате обновления получим такой счет:
х' = z
y' = 1/2 x
z' = 1/2 x + y,
где
После десяти повторений обнаружим, что от обновления к обновлению цифры практически не меняются. К этому моменту доля X составит 40,6% от всего PageRank, доля Y — 19,8%, а Z — 39,6%. Эти значения подозрительно близки к числам 40, 20 и 40%, что говорит о том, что алгоритм должен к ним сходиться.
Так и есть. Эти предельные значения алгоритм Google и определяет для сети как PageRank.
Предельные значения PageRank
Вывод для данной маленькой сети такой: страницы X и Z одинаково важны, несмотря на то что у Z в два раза больше входящих ссылок. Это и понятно: страница X равна Z по значимости, поскольку она получает от нее полное одобрение, однако взамен дает ей лишь половину своего одобрения. Вторая половина отправляется Y. Это также объясняет, почему Y достается только половина от долей X и Z.
Интересно, что эти значения можно получить, не прибегая к многократным итерациям. Надо просто подумать над условиями, определяющими стационарное состояние. Если после очередного обновления ничего не меняется, то x' = x, y' = y и z' = z. Поэтому, заменив переменные со штрихом в уравнениях обновлений на их эквиваленты без штрихов, получим систему уравнений
х = z
y = 1/2 x
z = 1/2 x + y,
при решении которой x = 2y = z. Поскольку сумма значений x, y и z должна равняться 1, отсюда следует, что x = 2/5, y = 1/5 и z = 2/5, что соответствует ранее найденным значениям.
Давайте на мгновение вернемся назад и посмотрим, как все это вписывается в широкий
Линейные уравнения, в противоположность уравнениям, содержащим нелинейные члены, например x2 или yz, либо sin x, решаются относительно просто. Сложности начинаются там, где в уравнениях присутствует огромное количество переменных, как это происходит в реальной сети. Поэтому одной из центральных задач линейной алгебры является разработка более быстрых алгоритмов для решения больших систем уравнений. Даже незначительные усовершенствования этих алгоритмов ощущаются практически во всех сферах жизни — от расписания авиарейсов до сжатия изображения.
Однако самой существенной победой линейной алгебры, с точки зрения ее роли в повседневной жизни, безусловно, стало решение парадокса дзен-буддизма для ранжирования страниц. «Страница хороша в той мере, в какой хорошие страницы ссылаются на нее». Переведенный в математические символы, этот критерий становится алгоритмом PageRank.
Поисковик Google стал тем, чем он есть сегодня, после решения уравнения, которое и мы с вами только что решили, но с миллиардами переменных — и, соответственно, с миллиардными прибылями.
25. Самые одинокие числа
Как поется в знаменитой песне 1960-х годов, один — самое одинокое число111, хотя, вдвоем порой бывает еще хуже, чем одному. Возможно, так и есть, но и с простыми числами тоже все непросто.
Паоло Джордано объясняет почему в своем бестселлере The Solitude of Prime Numbers («Одиночество простых чисел»)112. Это меланхолическая история любви двух затерянных в жизни людей, двух простых чисел, Маттиа и Аличе. В детстве им пришлось пережить трагедию, вследствие которой они практически перестали общаться с окружающими, но нашли друг в друге родственные души. Джордано пишет.
Простые числа делятся только на единицу и самих себя. Они занимают свое место в бесконечном ряду простых чисел, которые, как и остальные числа, зажаты между двумя другими, но на один шаг дальше, чем предыдущие. Эти числа подозрительны и одиноки, и Маттиа казалось, что они волшебные. Иногда он думал, что они очутились в этом ряду по ошибке, как жемчужины, нанизанные на нитку ожерелья. А порой ловил себя на мысли, что они тоже предпочли бы быть обычными числами, однако по какой-то причине не сложилось. [...]