Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Для этого увлекательного занятия с формами для шестилетних детей требуются лишь ножницы, карандаши, скотч и немного любознательности.125
Когда мы с женой раздали ученикам ленты Мебиуса и указанные выше принадлежности, учитель спросил у детей, каким, по их мнению, предметом они сейчас занимаются. Один мальчик поднял руку и сказал: «Не уверен, каким именно, но точно знаю, что не языкознанием».
Конечно, учитель ожидал от него ответа «искусство» или, скорее, «математика». Однако лучшим ответом стала
Итак, что же такое топология? Это энергично развивающаяся отрасль современной математики, ответвление геометрии, но только более свободное. В топологии две формы рассматриваются как одна, если одна из них непрерывно переходит в другую в результате изгибов, кручения, растягивания или любой другой непрерывной деформации, но при этом ее нельзя разрывать или прокалывать. В отличие от жестких объектов в геометрии, объекты в топологии ведут себя так, как если бы были бесконечно гибкими или сделанными из идеальной резины.
Топология фокусирует внимание на самых глубинных свойствах формы, тех, которые не изменяются после непрерывной деформации. Например, две полоски резины, одна в форме квадрата, а вторая — круга, топологически неразличимы. Здесь не имеет значения, что у квадрата четыре угла и четыре прямые стороны. Эти свойства несущественны. При непрерывной деформации от них можно избавиться, округлив углы квадрата и изогнув его стороны в дуги.
Но есть одна вещь, от которой подобная деформация избавиться не может — это свойственная кругу и квадрату замкнутость линии границы127. Обе фигуры ограничены замкнутыми кривыми. Это их общая топологическая сущность.
Подобно этому сущность ленты Мебиуса заключается в ее скрученности на пол-оборота, обеспечивающей форме ее особые свойства. Самое замечательное, что лента Мебиуса имеет только одну сторону и только один край. Другими словами, ее лицевая и обратная поверхности в действительности являются одним и тем же, так же как и ее верхний и нижний край. (Чтобы проверить это, просто ведите пальцем по середине ленты, пока не вернетесь в исходное положение.) Здесь благодаря полуобороту верхний и нижний край бумаги объединились в одну большую непрерывную кривую. Подобным образом объединились и обе стороны. Когда лента склеена, эти ее свойства фиксируются. Готовую ленту Мебиуса можно растягивать и скручивать, уже ничто не изменит того, что у нее одна сторона и один край.
Предложив первоклассникам исследовать вытекающие из этого удивительные свойства ленты Мебиуса, я хотел им продемонстрировать, насколько это интересно и увлекательно.
Сначала я попросил их взять карандаш и аккуратно провести линию посередине ленты. И они сосредоточенно стали рисовать нечто наподобие показанного здесь пунктира.
Сделав один оборот, они остановились, озадаченно переглядываясь. Потом стали шумно обсуждать, почему их линии не замкнулись, как ожидалось. Карандашная линия не вернулась в исходную точку, а оказалась на «другой» стороне поверхности. Это и был первый сюрприз: необходимо дважды пройти по ленте Мебиуса, чтобы добраться до исходной точки.
Внезапно один мальчик расплакался. Когда он обнаружил,
С некоторой опаской я предложил классу сделать еще одно дело — взять ножницы и разрезать ленту по всей длине по средней линии. «Как думаете, что выйдет в результате?» — спросил я у них.
«Они распадутся! Получится две части!» — предположили малыши. Но когда они попробовали, вышло нечто абсолютно невероятное (одна лента двойной длины), и возгласы радости и удивления стали еще громче. Это напоминало какой-то фокус.
После этого внимание ребят уже было сложно удержать. Они полностью увлеклись собственными экспериментами, изготавливая всевозможные варианты лент Мебиуса, закрученные на два или три полуоборота, разрезая их на две, три или четыре части, создавая всевозможные скрученные петли, цепочки и узлы, причем все это сопровождалось возгласами: «Смотрите, что у меня получилось!» А я все не мог успокоить плачущего мальчугана. Полагаю, мой урок не первый довел кого-то из учеников до слез.
Виктория Харт была настолько разочарована унылыми вузовскими курсами математики, что стала прямо в классе заниматься всякими глупостями, рисуя змей, деревья и растянутых слонов и не слушая монотонно бубнившего учителя. Ви Харт, называющая себя «развлекательным матемузыкантом на полной занятости», разместила свои каракули на YouTube и вмиг стала знаменитой. Они были просмотрены сотни тысяч раз, а в случае со слонами — более миллиона. Сама Вики и ее видеоклипы совершенно захватывающие128.
Два из моих любимых свойств ленты Мебиуса связаны с музыкой и историями Виктории. Самое непостижимое из них — «Музыкальная шкатулка Мебиуса», проигрывающая отрывок из мелодии Ви, навеянной книжками про Гарри Поттера.
Эта мелодия закодирована в серию отверстий, пробитых в перфоленте, которые затем подаются в обычную музыкальную шкатулку. Изобретение Ви состоит в том, что она скрутила концы ленты и склеила их в виде ленты Мебиуса. Вращая ручку музыкальной шкатулки, Ви прогоняла через нее ленту, и мелодия звучала как обычно. Но примерно через пятьдесят секунд (в ее видеоклипе) петля делала один оборот, и, поскольку это была лента Мебиуса, закрученная на пол-оборота, музыкальная шкатулка начинала воспроизводить мелодию, как если бы она была записана на обороте ленты, то есть в перевернутом виде. Та же мелодия повторялась, только теперь перевернутая. Высокие ноты становились низкими, а низкие — высокими. Они играются в том же порядке, но в перевернутом виде, из-за перекрученности ленты Мебиуса.
Еще более потрясающий пример «перевернутого» применения ленты Мебиуса — это «История ленты Мебиуса: Винди и мистер Уг», горько-сладкая притча о недоступной любви. Маленькая приветливая треуголочка по имени Винди, нарисованная стирающимся маркером, живет в плоском мире из прозрачного целлулоида в форме ленты Мебиуса. Она страдает от одиночества и не теряет надежды встретить единственного обитателя своей вселенной — загадочного джентльмена Уга, живущего внизу. Она никогда его не видела: он почему-то всегда отсутствует, когда она останавливается у его дома. Но ей все равно очень нравятся письма, которые он ей пишет, и она все же надеется на встречу.