Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Вместо того чтобы доказать этот удивительный факт (результат, известный как теорема Римана о перестановке слагаемых в условно-сходящихся рядах)142, рассмотрим очень простую перестановку, сумму которой легко посчитать. Сгруппируем члены этого ряда таким образом, чтобы к каждому положительному слагаемому прибавлялось два отрицательных.
Далее упростим каждое выражение в скобках, вычитая второй член из первого и оставляя без изменения третий член. Тогда ряд сводится к сумме:
После
Смотрите, кто вернулся! Бестия в скобках — это снова знакочередующийся гармонический ряд. Но в результате перестановки, даже при сохранении всех его членов, как-то получилось, что он вдвое уменьшился по сравнению с первоначальным! Представленный в таком виде ряд теперь сходится к
Странно? Да. Ненормально? Да143. Но неудивительно ли, что то же самое происходит и в реальной жизни. Как мы уже убедились в ходе прочтения книги, даже самые заумные и надуманные понятия математики часто находят практическое применение. Связь с практикой в данном случае заключается в том, что во многих областях науки и техники (от обработки сигналов и акустики до финансов и медицины) лучше всего представлять различные виды кривых, звуков, сигналов или изображений как группы (или совокупности) более простых кривых, звуков, сигналов или изображений. При этом основными строительными блоками будут синусоиды. Этот метод называется анализом Фурье144, а соответствующая сумма — рядом Фурье. Но когда рассматриваемый ряд имеет некоторые патологические свойства, как у знакочередующегося гармонического ряда и его невменяемых родственников, сходимость у ряда Фурье может быть действительно очень необычной.
Вот, например, один из рядов Фурье, непосредственно вдохновленный знакочередующимся гармоническим рядом:
Чтобы получить представление о том, как он выглядит на графике, давайте рассмотрим сумму его первых десяти членов.
Частичная сумма 10 членов
Эта частичная сумма (показана сплошной линией) явно пытается приблизиться к более простой волновой кривой в форме зубцов пилы (показано пунктирной линией). Заметим, однако, что вблизи краев зубцов что-то не так. Синусоида «промахнулась» и приняла вид странного пальца, который выходит за пилообразную волну. Чтобы увидеть это отчетливее, посмотрим на увеличение одного из зубцов при x = :
Частичная сумма 10 членов
Попытаемся избавиться от пальца, включив в частичную сумму больше слагаемых. Не повезло. Палец просто становится тоньше и перемещается ближе к краю, но его высота остается примерно такой же.
Частичная сумма 50 членов
Частичная
Вину за происходящее можно возложить на знакочередующийся гармонический ряд. Его описанная выше патология сейчас загрязняет ряды, связанные с рядами Фурье. Они отвечают за этот раздражающий палец, который никуда не денется.
Данный эффект, обычно называемый феноменом Гиббса145, больше, чем просто математический курьез. Он известен с середины XIX века и в настоящее время проявляется в цифровой фотографии и на МРТ-сканировании146. Нежелательные колебания, вызванные феноменом Гиббса, могут привести к размытости, мерцанию и прочим непреднамеренным нежелательным визуальным искажениям на острых краях видеоизображения. В медицинской практике их можно ошибочно принять за поврежденную ткань или скрыть повреждения, которые есть на самом деле.
К счастью, сто лет назад аналитики точно определили, что вызывает артефакты Гиббса (см. примечание 147), и научили нас, как преодолеть эти явления, или, по крайней мере, распознать их в случае появления.
30. Отель Гильберта
В феврале 2010 года я получил электронное письмо от женщины по имени Ким Форбс. Ее шестилетний сын Бен задал ей математический вопрос, на который она не смогла ответить, и она надеялась, что я смогу помочь.
Сегодня 100-й день его пребывания в школе. Сын был очень взволнован и рассказал мне все, что знает о числе 100, включая то, что оно четное. Затем он сказал, что 101 нечетное число, а 1 000 000 — четное и т. д. А потом остановился и спросил: «Бесконечность — четная или нечетная?»
Я объяснил Ким, что бесконечность не может быть ни четной, ни нечетной. Это не число в обычном смысле, и оно не подчиняется правилам арифметики. Например, я писал: «Если бы бесконечность была нечетным числом, при умножении на себя она стала бы четным числом. И обе были бы бесконечностями! Так что в целом понятие четности и нечетности не имеет смысла для бесконечности».
Ким ответила:
Спасибо. Бен удовлетворен таким объяснением. Ему понравилась идея, что бесконечность достаточно велика, чтобы быть одновременно как четной, так и нечетной.
Несмотря на возникшее искажение (бесконечность не нечетная и не четная, а ни то и ни другое), толкование Бена близко к истине. Бесконечность бывает ошеломляющей.
Некоторые из ее странных сторон впервые были освещены в конце XIX века в новаторской работе Георга Кантора148 по теории множеств149. Кантор особенно интересовался бесконечными множествами чисел и точек, подобных множеству {1, 2, 3, 4,...} натуральных чисел и множеству точек на прямой. Он определил строгий способ сравнить разные бесконечные множества и обнаружил шокирующее свойство бесконечностей. Оказывается, одни бесконечности больше, чем другие.
В то время теория Кантора вызвала не только неприятие, но и возмущение. Анри Пуанкаре, один из ведущих математиков того времени, назвал ее «болезнью». Однако другой гигант той эпохи, Давид Гильберт150, увидел в ней долгосрочный вклад в науку и провозгласил: «Никто не может изгнать нас из рая, созданного Кантором».
Моя задача — дать вам некоторое представление об этом рае. Но прежде чем начать, позвольте, следуя подходу, введенному самим Гильбертом, непосредственно рассмотреть множества чисел или точек. Он живо передал странности и уникальность теории Кантора на примере притчи о «Гранд-отеле», который в настоящее время называется отелем Гильберта151.