Чтение онлайн

на главную - закладки

Жанры

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Строгац Стивен

Шрифт:

Посмотрим, как работает теорема Пифагора. Для этого в выражение a2 + b2 = c2 подставим числа. Пусть a = 3 ярдам и b = 4 ярдам. Тогда, чтобы определить неизвестную длину стороны c, мы надеваем черные капюшоны и читаем нараспев: с2 — это сумма 32 и 42, что равно 9 и 16. (Имейте в виду, что все величины теперь измеряются в квадратных ярдах, так как мы возводим в квадрат не только сами числа, но и ярды.) Так как 9 + 16 = 25, то с2 = 25 квадратным ярдам. Далее извлекаем квадратные корни из обеих частей уравнения и получаем длину гипотенузы с = 5

ярдов.

Такой подход к теореме Пифагора создает впечатление, что в ней говорится о длине сторон треугольника. Хотя традиционно считается, что в ней идет речь о площадях. Это становится очевидным, если посмотреть, как Пифагор ее сформулировал.

Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах.

Обратите внимание на слова «построенный на». Мы не говорим о квадрате гипотенузы — это новомодная алгебраическая концепция об умножении длины гипотенузы саму на себя. Нет, мы здесь имеем в виду некий квадрат, «сидящий» на гипотенузе примерно вот так:

Давайте назовем его большим квадратом, чтобы отличить от малого и среднего, которые можно построить на двух других сторонах:

Теперь теорема утверждает, что большой квадрат имеет такую же площадь, как малый и средний, вместе взятые.

На протяжении тысяч лет этот чудесный факт подтверждался следующей диаграммой, представляющей мнемоническую символьную схему танца квадратов:

Рассматривать теорему с точки зрения площадей квадратов весьма приятно. Например, построив квадраты из множества маленьких крекеров [59] , вы можете сначала эмпирическим путем проверить верность теоремы, а затем съесть их. Или можно представить теорему как детскую головоломку, состоящую из пазлов различной формы и размера. Путем их перестановки теорему очень легко доказать.

59

Дети и их родители насладятся съедобными иллюстрациями теоремы Пифагора, предложенными Джорджем Хартом на его постере Pythagorean crackers («Пифагорейские крекеры») для музея математики по адресу http://momath.org/home/pythagorean-crackers/.

Давайте вернемся к наклоненному квадрату, сидящему на гипотенузе.

Интуитивно это изображение должно немного смущать. Квадрат выглядит потенциально нестабильным: кажется, что он может свалиться или съехать вниз по наклонной плоскости. А тут еще явное самоуправство: каждая из его четырех сторон хочет соприкасаться с треугольником.

Чтобы усмирить все стороны квадрата, поместим еще три таких же треугольника на три его оставшиеся стороны так, чтобы получилась более устойчивая и симметричная картинка.

Теперь вспомним, что мы пытаемся доказать, что наклоненный белый квадрат (большой квадрат, все еще сидящий на гипотенузе) имеет такую же площадь, как малые и средние квадраты, вместе взятые. Но где же здесь другие квадраты? Чтобы найти их, надо переместить часть треугольников. Представьте картинку как изображение головоломки. В углах ее жесткой рамки вставлены четыре кусочка треугольной формы.

При такой интерпретации наклоненный квадрат будет свободным пространством в середине головоломки. Оставшуюся часть внутри рамки занимают пазлы. Попробуем их подвигать. Конечно, что бы мы ни делали, мы никогда не сможем изменить общую площадь свободного пространства внутри рамки — оно всегда будет областью, лежащей вне пазлов.

После небольшого мозгового штурма переставим пазлы таким образом:

Пустое пространство неожиданно принимает форму среднего и малого квадрата, которые мы ищем. А так как общая площадь свободного пространства неизменна, вот мы и доказали теорему Пифагора!

Это доказательство дает гораздо больше, чем уверенность в правильности теоремы, — оно ее разъясняет. И именно это делает его элегантным.

Для сравнения рассмотрим еще одно доказательство. Не менее знаменитое, и, пожалуй, самое простое из тех, где не используются площади.

Как

и прежде, возьмем прямоугольный треугольник со сторонами a, b и гипотенузой с, как показано ниже на рисунке слева.

Далее (как что-то подсказывает нам по божественному вдохновению или благодаря собственной гениальности) проведем перпендикуляр вниз от гипотенузы к противоположному углу, как это сделано в правом треугольнике.

Эта маленькая умная «бестия» внутри исходного треугольника создает еще два меньших треугольника. Легко доказать, что все они подобны, то есть у них одинаковая форма, но различные размеры. Что, в свою очередь, означает, что длина их соответствующих сторон имеет подобные пропорции. Это можно записать в виде следующей системы равенств:

Мы также знаем, что

c = d + e,

поскольку построенный перпендикуляр делит гипотенузу c на два меньших отрезка d и e.

В этот момент не стыдно немного растеряться или просто не знать, что делать дальше. Мы в трясине из пяти представленных выше равенств и пытаемся привести их к равенству

a2 + b2 = c2.

Попробуйте сделать это за несколько минут. Вы обнаружите, что два равенства излишни. Следовательно, это неэлегантное доказательство. В изящном доказательстве не должно быть ничего лишнего. Конечно, все крепки задним умом, но ведь сначала мы ничего не знали об этих равенствах. Что, впрочем, не делает нашу мину при плохой игре лучше.

Тем не менее, манипулируя тремя «нелишними» равенствами, можно вывести требуемое соотношение. (См. пропущенные шаги доказательства в примечании [60] в конце книги.)

60

Вот рассуждения, пропущенные во втором доказательстве. Возьмем равенство a/d = c/a и преобразуем его в d = a2/c. Аналогично преобразуя другое равенство, получим e = b2/c. Наконец, подставив выражения для d и e в равенство c = d + e, получим c = a2/c + b2/c. Теперь умножим обе части последнего равенства на c и выведем искомую формулу c2 = a2 + b2.

Согласны ли вы с тем, что с эстетической точки зрения этот вариант уступает первому? Конечно, он приводит к доказательству. Но кто пригласил на вечеринку всю эту алгебру? Ведь это геометрическая теорема.

Однако более серьезный недостаток последнего доказательства — непрозрачность. К тому времени, когда вы закончите упорно продираться сквозь его дебри, может быть, скрепя сердце вы и поверите в верность теоремы, но все еще в этом не убедитесь.

Но оставим в стороне доказательства. Что вообще дает теорема Пифагора? Она выявляет фундаментальную истину о природе пространства, показывая, что оно плоское, а не изогнутое. Например, для поверхности шара или тора (фигура, похожая на бублик) подобную теорему придется изменить. Эйнштейн столкнулся с этим в своей общей теории относительности (где гравитация рассматривается не как сила, а как проявление искривления пространства), как и Георг Риман [61] и другие ученые в условиях, когда только закладывались основы неевклидовой геометрии.

61

Георг Риман (1826–1866) — немецкий математик. Внес огромный вклад сразу в несколько разделов математической науки. Положил начало геометрическому направлению в теории аналитических функций, вместе с Огюстеном Коши сформулировал теорию интегралов. Развил комплексный анализ и теорию чисел. Прим. перев.

Поделиться:
Популярные книги

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Безнадежно влип

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Безнадежно влип

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

Первый среди равных

Бор Жорж
1. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных