Удовольствие от X.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Этот новый вид чисел (или, если вы предпочитаете быть агностиками, называйте их символами, а не числами) определяется таким свойством, что
i2 = –1.
То, что i нельзя найти на числовой оси, действительно правда. В этом отношении i гораздо более необычно, чем ноль, отрицательные числа, дроби и даже иррациональные числа, но, как ни странно, у всех мнимых чисел есть место на числовой оси. И при достаточном воображении наш ум может его отыскать и для i тоже. Оно «живет» на собственной мнимой оси, расположенной под прямым углом к основной. И, наложив мнимую ось на ось реальную числовую, вы создадите 2D-пространство, то есть двумерную плоскость, где обитают воображаемые числа.
Это комплексные числа. Но их комплексность означает не сложность, а то, что два типа чисел, действительных и мнимых, скреплены вместе и образуют сложное, гибридное число, например 2 + 3i.
Комплексные
И напоследок грандиозное утверждение, называемое основной теоремой алгебры. В нем говорится, что корни любого многочлена — всегда комплексные числа. В этом смысле они завершают поиски святого Грааля. Вселенная чисел больше не должна расширяться. Комплексные числа — кульминация путешествия, которое началось с единицы.
Вы можете оценить полезность комплексных чисел (то есть почувствовать их правдоподобие), если знаете, как их визуализировать. Ключом к визуализации станет понимание того, что такое умножение на i. Предположим, мы умножаем произвольное положительное число, скажем 3, на i. Результатом будет мнимое число 3i.
Таким образом, умножение на i представляет собой вращение против часовой стрелки на четверть оборота. До умножения на i число 3 обозначается стрелкой длиною 3, направленной на восток, результатом умножения на i будет стрелка такой же длины, но направленная на север.
Инженеры-электротехники любят комплексные числа именно по этой причине. Иметь такой компактный способ представления вращения на 90° при работе с переменным током, напряжением или электрическими и магнитными полями очень удобно, потому что они часто связаны с колебаниями или волнами, которые составляют четверть цикла (то есть представляют сдвиг фазы на 90°).
Действительно, комплексные числа необходимы всем инженерам. В авиационно-космической промышленности они облегчили расчеты подъема крыла самолета. Инженеры-строители и инженеры-механики регулярно используют их для анализа вибрации элементов пешеходных мостов, небоскребов и автомобилей на ухабистой дороге.
Поворот на 90° также проливает свет на то, что на самом деле означает i2 = –1. Если мы умножим положительное число на i2, то стрелка, равная длине положительного числа, повернется на 180° в направлении с востока на запад, так как производится два поворота на 90° (по одному для каждой степени i), в итоге — на 180°.
Но умножение на –1 делает такое же сальто на 180°. Вот поэтому i2 = –1.
Компьютеры вдохнули новую жизнь в комплексные числа и вековую проблему извлечения корней. Когда ПК не используются нами для веб-серфинга или отправки и получения электронной почты, они на наших столах способны обнаружить такое, что древние и представить себе не могли.
В 1976 году мой коллега по Корнуолльскому университету Джон Хаббард попытался применить в задачах по динамике метод Ньютона [40] , мощный алгоритм для поиска корней уравнений в комплексной плоскости. В соответствии с этим методом выбирается начальное значение (близкое к значению корня) и неоднократно производятся определенные вычисления. При этом на каждом последующем шаге используется значение, полученное на предыдущем. Этот метод позволяет быстро приблизиться к корням уравнения.
40
Прекрасную журналистскую работу о Джоне Хаббарде можно найти в книге J. Gleick, Chaos, р. 217 (Viking, 1987). Собственный взгляд Хаббарда на метод Ньютона отображен в разделе 2.8 книги J. Hubbard and B. B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms, 4th edition (Matrix Editions, 2009).
Для читателей, которые хотят углубиться в математический аппарат метода Ньютона, более сложное, но все же довольно понятное объяснение дано в книге H.-O. Peitgen and P. H. Richter, The Beauty of Fractals (Springer, 1986), chapter 6; также см. статью Эдриана Двади (сотрудник Хаббарда), озаглавленную Julia sets and the Mandelbrot set, в этой же книге.
Хаббард заинтересовался множественными корнями. Какой из множественных корней можно найти методом Ньютона? Хаббард доказал, что из двух корней всегда будет найден тот, который наиболее близок к начальному значению. Однако при наличии трех и более корней его предыдущее доказательство не сработало.
Тогда Хаббард провел так называемый численный эксперимент. Он запрограммировал компьютер на выполнение метода Ньютона, настроив устройство так, чтобы оно маркировало цветом миллионы различных начальных значений в соответствии с тем, к какому корню они приближались, и меняло интенсивность цвета в зависимости от скорости их приближения к корню.
До того как Хаббард увидел результат, он предполагал, что к корням уравнения быстрее всего притянутся наиболее близкие к ним по значению, и это отобразится в виде ярких точек на сплошном цветовом пятне. Но вот границы между пятнами? О них он даже не думал.
Компьютер выдал неожиданный результат.
Пограничная область между пятнами напоминала психоделические галлюцинации [41] . Цвета в ней смешивались беспорядочно, соприкасаясь друг с другом в невероятно большом количестве точек. Они всегда располагались в трех направлениях. Другими словами, где бы ни появлялись два цвета, между ними всегда присутствовал третий.
41
Хаббард не был первым математиком, поставившим вопрос о применении метода Ньютона, в комплексной плоскости. Артур Кэли, британский математик, задал его еще в 1879 году. Он также рассмотрел квадратичный и кубический полиномы и понял, что первый случай гораздо проще, чем второй. Хотя тогда он еще не мог знать о фракталах, которые были обнаружены век спустя, он прекрасно понимал, что есть риск возникновения определенных проблем, если корней окажется больше двух. В его небольшой (на одну страницу) статье Desiderata and suggestions: No.3—the Newton-Fourier imaginary problem, American Journal of Mathematics, 2(1), March 1879, p. 97, с которой можно ознакомиться на сайтезаключение звучит как сдержанное предупреждение: «Для квадратного уравнения решение легко и элегантно, но представляется, что решение кубического уравнения окажется значительно сложнее».
Расширение границ выявило наличие пятен внутри пятна.
Структура была фрактальной [42] — сложной формы, внутренняя структура которой повторялась во все более мелких масштабах.
Кроме того, вблизи границы царил хаос. Две точки могли вначале находиться очень близко друг к другу, какое-то время попрыгать рядышком, а потом разойтись к разным корням. Выбранный корень был так же непредсказуем, как выигрышные числа при игре в рулетку. Мелочи, крошечные, незаметные изменения в начальных условиях могли полностью изменить всю картину.
42
Снимки, представленные в этой главе, были рассчитаны методом Ньютона, примененного для нахождения корней многочлена z3 — 1. Его корни — три кубических корня из 1. Для этого случая в соответствии с алгоритмом Ньютона на комплексной плоскости выбирается точка z, она и переносит значение корня в новую точку, рассчитанную по формуле
z — (z3 — 1)/(3z2).
Именно это значение и становится следующим значением z. Данный процесс повторяется, пока z не подходит достаточно близко к корню или, что эквивалентно, пока z3 — 1, не подойдет достаточно близко к нулю, где под «достаточно близко» понимается очень маленькое расстояние, выбранное программистом. Затем все исходные точки, которые приводят к определенному корню, окрашиваются в одинаковый цвет. Таким образом, точки красного цвета сходятся к одному корню, точки зеленого — к другому, а синего — к третьему. Снимки окончательного фрактала Ньютона были любезно предоставлены Саймоном Татемом. Дополнительные сведения о его работе вы найдете на странице Fractals derived from Newton-Raphson iteration на сайте: http://www.chiark.greenend.org.uk/~sgtatham/newton/.
Видеоанимация фрактала Ньютона сделана Teamfresh. Потрясающе глубокое масштабирование других фракталов, в том числе знаменитого множества Мандельброта, можно увидеть на сайте Teamfresh по адресу http://www.hd-fractals.com.
Работа Хаббарда была одной из первых вылазок в область науки, ныне называемой комплексная динамика, — потрясающее сочетание теории хаоса, комплексного анализа и фрактальной геометрии. В некотором смысле это позволило геометрии вернуться к своим корням. В 600 году до Рождества Христова руководство для строителей храма в Индии [43] , написанное на санскрите, давало подробные инструкции, как при проектировании ритуальных алтарей вычислять квадратные корни. Спустя свыше 2500 лет математики все еще ищут корни, но в настоящее время инструкции пишутся в двоичном коде.
43
Для знакомства с древнеиндийскими методами нахождения квадратного корня см. работу D. W. Henderson and D.Taimina, Experiencing Geometry, 3rd edition (Pearson Prentice Hall, 2005).
Прим. ред.: См. также Чистяков В. Д. Материалы по истории математики в Китае и Индии. М.: Учпедгиз, 1960.