Удовольствие от X.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
9. Ванна моя преисполнена [44]
Дядюшка Ирв был братом моего отца и его компаньоном. Они владели обувным магазином в нашем городе. Так вот, он хорошо разбирался в практической стороне вещей и по большей части находился наверху в своем кабинете, потому что лучше управлялся с цифрами, чем с клиентами.
Когда мне было лет десять или одиннадцать лет, дядя Ирв задал мне мою первую арифметическую задачу [45] . Этот день навсегда врезался мне в память, вероятно, потому, что я ошибся и чувствовал смущение.
44
В названии автор перефразирует известную фразу из Библии, Псалтырь (22:5) «Ты приготовил предо мною трапезу в виду врагов моих; умастил елеем голову мою; чаша моя преисполнена» (англ. My Сup Runneth Over); оригинальное
45
Большое количество классических арифметических задач находятся на http://MathNEXUS.wwu.edu/Archive/oldie/list.asp.
Прим. ред.: В русскоязычном интернете очень много сайтов, которые предлагают арифметические задачи для «решателей» разного возраста — от дошкольников до седых ветеранов. Вот несколько из них: Эрудит. net ; Математические задачи — Логика и рассуждения ; Математические задачи ; Математика .
В условии задачи говорилось о заполнении ванны водой [46] . Если включить кран с холодной водой, то ванна наполнится за полчаса, а если с горячей — то за час. Сколько времени потребуется, чтобы заполнить ванну, когда включены оба крана?
Я уверенно, вероятно, как и многие из вас, ответил: «Сорок пять минут». Дядюшка Ирв покачал головой и усмехнулся. И своим высоким гнусавым голосом он преподал мне урок.
«Стивен, — обратился ко мне он, — скажи, сколько воды будет в ванне через минуту». Холодная вода заполняет ванну за 30 минут, так что за одну минуту она заполнит
46
Более сложная задача с ванной появилась в драме 1941 года How Green Was My Valley («Как зелена моя долина»). Клип к этому фильму можно найти по адресуИ пока вы еще там, посмотрите ролик из комедии о бейсболе Little Big League («Маленькая большая лига»), который можно найти по адресу http://www.math.harvard.edu/~knill/mathmovies/m4v/league.m4v.
В этом фильме есть задача о покраске домов: «Если я могу покрасить дом за три часа, а ты — за пять, сколько нам потребуется времени на покраску дома, если мы будем работать вместе?».
На экране мы видим, как бейсболисты дают различные глупые ответы. «Все очень просто, пять умножить на три, так что это пятнадцать». «Нет, нет, нет, посмотрите. Это займет восемь часов: пять плюс три, вот и восемь». После еще нескольких промахов один игрок наконец отвечает правильно: 1 7/8 часов.
Чтобы сложить эти дроби, обратите внимание, что наименьший общий знаменатель равен 60. Преобразовав
Это означает, что вода из двух кранов за минуту заполнила
С тех пор на протяжении многих лет я неоднократно вспоминал о той ванне, причем всегда с любовью к дядюшке Ирву и самой задаче. Мне преподали урок, как просто ради удовольствия решать задачи, основываясь на интуиции, и как найти приближенное решение, если сложно отыскать точное.
Рассмотрим мое первоначальное предположение — 45 минут — и, решив задачу интуитивно (в соответствии со здравым смыслом), поймем, что этот ответ не может быть правильным. Действительно, он абсурден. Чтобы понять почему, предположим, что горячая вода отключена, тогда холодная вода заполнит ванну за 30 минут. Поэтому какой бы дядюшка Ирв ни задал вопрос, ответ должен быть «меньше 30 минут»; если в ванну льется не только холодная, но и горячая вода, то ванна заполнится быстрее.
Правда, этот вывод не столь убедителен, как ответ «20 минут», который мы получили методом, предложенным дядюшкой Ирвом, зато он не требует никаких расчетов.
Другой способ упростить задачу — предположить, что вода из обоих кранов течет с одинаковой скоростью. Причем ванна при одном открытом кране заполняется за 30 минут. Тогда очевидно, что она наполнится за 15 минут, так как каждый кран выполнит половину работы.
Отсюда сразу становится ясно, что, по расчетам дядюшки Ирва, наполнение ванны должно занимать больше пятнадцати минут. Почему? Потому что «быстрый + быстрый» побьет «медленный + быстрый». Наша условно симметричная задача имеет два быстрых крана, в то время как у дядюшки Ирва один медленный и один быстрый. А поскольку 15 минут — ответ задачи для двух быстрых кранов, то ванна дядюшки Ирва будет наполняться дольше.
Получается, что благодаря рассмотрению двух гипотетических случаев — в первом ванна заполняется только холодной, так как горячая отключена, а во втором — горячей и холодной с одинаковой скоростью, — мы узнали, что ответ лежит в пределах 15–30 минут. В более сложных задачах, где порой невозможно найти точный ответ, и не только в математике, но и в других областях, такой подход может очень пригодиться.
Даже если вы все-таки найдете точное решение, не стоит самоуспокаиваться. Данную задачу можно решать более простыми способами. Это единственное место, где математика дает простор творчеству. Например, помимо метода дядюшки Ирва (с помощью обыкновенных дробей, приведенных к общему знаменателю), есть более забавный маршрут, приводящий к тому же результату. Несколько лет спустя, когда я попытался определить, почему эта задача настолько запутанна, до меня дошло, что в первую очередь из-за разных скоростей кранов. Необходимость следить, каков вклад каждого крана в наполнение ванны, вызывает напряжение. Особенно если вы можете представить такую картину: горячая и холодная вода плещется из кранов, перемешиваясь в ванне.
Так что давайте не смешивать два вида воды, по крайней мере в нашей голове. Вместо одной ванны представим себе две разные конвейерные ленты с движущимися ваннами с отдельными кранами с горячей и холодной водой.
Из каждого крана наполняется одна ванна — перемешивание не допускается. И как только одна ванна наполняется, она движется далее по конвейеру, уступая место следующей.
Теперь все становится понятным. За один час кран с горячей водой наполняет одну ванну, за это же время кран с холодной водой заполняет две ванны (так как на одну требуется полчаса). Это составляет три ванны в час или одну ванну каждые двадцать минут. Эврика!
Так почему же столько людей, в том числе и я, грубо ошибаются, отвечая «45 минут»? Почему так заманчиво разделить пополам сумму тридцати и шестидесяти минут? Я не уверен, но, кажется, из-за ошибочного понимания условия задачи. Может быть, задача с заполнением ванны в сознании наложилась на другие задачи, где нахождение разности имело бы смысл. Моя жена объяснила мне это с помощью аналогии: «Представь себе, что ты помогаешь пожилой даме перейти улицу. Без твоей помощи это займет у нее 60 секунд, ты бы перебежал дорогу за тридцать. Сколько времени вы будете ее переходить, если ты будешь держать даму под руку?» Теперь ясна логика людей, которые говорят о сорока пяти секундах, потому что, когда пожилая дама цепляется за ваш локоть, она замедляет ваше движение, а вы ускоряете ее.
Отличие от задачи с ванной здесь в том, что и вы, и пожилая дама воздействуете на скорость движения друг друга, чего не происходит с кранами. Они независимы. По-видимому, наше подсознание не распознает это различие, по крайней мере, когда мы жадно хватаемся за неправильный вывод.
Нет худа без добра. Даже неправильные ответы могут быть полезны — если вы осознаете, что они неправильные. Они разоблачают ошибочные аналогии и другие погрешности мышления и помогают облечь суть проблемы в более понятную форму.
Классические занимательные арифметические задачи специально сформулированы таким образом, чтобы так же ловко, как это делает фокусник, обмануть свою жертву, то есть вас. Само условие задачи содержит подвох. Если вы ответите инстинктивно, то, вероятно, попадетесь на эту удочку.
Вот пример такого типа задачи. Предположим, трое мужчин могут покрасить три забора за три часа. Сколько времени потребуется, чтобы один человек покрасил один забор?
Очень заманчиво ляпнуть: «Один час». Сама формулировка подталкивает вас к этому. Барабанный ритм первого предложения — трое мужчин, три забора, три часа — настраивает ваше внимание на определенную волну, поэтому когда в вопросе в таком же ритме повторяется: один человек, один забор, то ответу «один час» трудно сопротивляться. Эти параллельные конструкции психологически настраивают на ответ, который правилен лингвистически, но математически неверен.