Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики
Шрифт:
Другой риск заключается в том, что расходы по сбору больших данных растут быстрее, чем возможности организации по их использованию. Избежать этой проблемы можно, лишь обеспечив соответствующий темп развития. Нет необходимости браться за все сразу и с завтрашнего дня собирать 100 % информации, поступающей из каждого нового источника данных. Необходимо собирать и изучать образцы новых данных. С их помощью можно провести экспериментальный анализ, чтобы определить, что действительно важно в каждом источнике и как каждый из них может быть использован. Основываясь на этом, организация будет готова к проведению полномасштабного эффективного анализа источника данных.
Вероятно,
Не так давно стало известно, как несоблюдение безопасности привело к тому, что номера кредитных карт и правительственные документы были украдены и опубликованы в интернете. Не будет преувеличением сказать, что, если данные где-то хранятся, кто-то рано или поздно попытается их украсть. Как только злоумышленники получат к ним доступ, они будут их использовать в своих целях. Из-за непродуманной или ненадлежащим образом определенной политики конфиденциальности крупные организации сталкивались с проблемами: данные были использованы таким образом, который пользователи не понимали или не одобряли, и это вызывало негативную реакцию. По мере развития сферы больших данных должны развиваться сферы самостоятельного и правового регулирования их использования.
Наличие саморегулирования критически важно. Оно говорит о том, что отрасли не все равно. Участники рынка должны обеспечить саморегулирование и разработать правила, которых может придерживаться каждый. Такие правила обычно более эффективны и менее жестки, чем те, которые вводятся государственными органами, когда отрасль не может контролировать себя самостоятельно.
Принимая во внимание природу многих источников больших данных, нетрудно понять, что конфиденциальность представляет собой серьезную проблему. При наличии подобных объемов данных всегда найдутся нечестные люди, которые попытаются использовать их без вашего согласия или таким образом, который вам вряд ли понравится. Правила обработки, хранения и применения больших данных должны развиваться наряду с аналитическими возможностями. С самого начала пересмотрите подход вашей организации к вопросам конфиденциальности. Ваша позиция должна быть совершенно ясной и прозрачной.
Люди уже обеспокоены тем, как отслеживается история просмотра веб-страниц. Существуют опасения по поводу отслеживания местоположения пользователей с помощью приложений для мобильных телефонов и GPS-систем. Раз несанкционированное использование больших данных возможно, рано или поздно кто-нибудь попытается это сделать. Значит, необходимо предпринять шаги, чтобы этого не допустить. Организации должны четко объяснить, как они будут обеспечивать безопасность данных и как будут их использовать, если они хотят получить разрешение пользователей на их сбор и анализ.
Почему большие данные необходимо укротить
Многие организации пока мало используют большие данные.
Нечасто компании удается воспользоваться совершенно новыми источниками данных, чтобы извлечь из них пользу для своего бизнеса, пока конкуренты не сделали то же самое. Такую возможность предоставляют сегодня большие данные. У вас есть шанс опередить своих конкурентов. В ближайшие годы мы увидим множество примеров того, как с помощью анализа больших данных компании полностью трансформируют себя; как конкуренты были застигнуты врасплох и остались далеко позади. Речь идет не только о таких модных новых индустриях, как электронная коммерция. Уже сейчас в публикациях, на конференциях и в других источниках приводятся убедительные примеры прорыва, в том числе компаний, работающих в скучных, старых и тяжеловесных отраслях. Мы расскажем об этом в главах 2 и 3 .
Ваша организация должна начать процесс освоения больших данных уже сейчас. Пока что, если вы до сих пор игнорировали большие данные, то лишь упустили возможность быть в авангарде. Сегодня вы еще можете оказаться впереди всех. А если будете оставаться в стороне, через несколько лет окажетесь далеко позади. Если ваша организация уже занимается сбором данных и использует анализ в процессе принятия решений, то переход к большим данным не будет проблемой. Это просто расширение той деятельности, которой вы занимаетесь сегодня.
Фактически решение об использовании больших данных не должно стать проблемой. Большинство организаций уже подходят к сбору и анализу данных как к одной из основных частей своей стратегии. Хранилища данных, отчетность и анализ используются повсеместно. Если организация понимает, что данные представляют собой ценность, работа с большими данными будет лишь расширением ее деятельности. Не позволяйте скептикам убедить вас в том, что исследование больших данных не стоит затраченных усилий, или что их ценность еще не доказана, или что это слишком рискованно. Те же самые доводы помешали бы прогрессу, достигнутому за последние несколько десятилетий в области анализа данных. Обратите внимание сомневающихся на то, что работа с большими данными – это лишь продолжение того, что организация уже делает. Большие данные не представляют собой чего-то принципиально нового, и их не следует бояться.
Структура больших данных
В этой книге часто говорится о том, что данные могут быть структурированными, неструктурированными, полуструктурированными или даже мультиструктурированными. Большие данные нередко описываются как неструктурированные, а традиционные данные – как структурированные. Однако границы между ними не столь ясны, как можно понять из названия. Рассмотрим три типа структуры данных с точки зрения неспециалиста. Технические детали выходят за рамки данной книги.