УРОЖАИ И ПОСЕВЫ
Шрифт:
1. Топологические тензорные произведения и ядерные пространства.
2. «Непрерывная» и «дискретная» двойственность (производные категории, «шесть операций»).
3. «Йога» Римана-Роха-Гротендика (К-теория, связь с теорией пересечений).
4. Схемы.
5. Топосы.
6. Этальные и /-адические когомологии.
7. Мотивы и мотивная группа Галуа ((^-категории Гротендика).
8. Кристаллы и кристальные когомологии, йога «коэффициентов де Рама», «коэффициентов Ходжа».
9. «Топологическая алгебра»: оо-стэки, derivateurs; когомологический формализм топосов как основа для новой гомотопической алгебры.
10. Ручная топология.
11. Нога анабелевой алгебраической геометрии, теория Галуа-Тейхмюллера.
12. «Теоретико-схемная», или «арифметическая» точка зрения на правильные многогранники и правильные конфигурации произвольного рода.
Если не считать
сятой) и в то же время предоставила ключевое понятие для полнейшего обновления алгебраической геометрии и ее языка.
Напротив, первая и последняя из двенадцати тем кажутся мне по своему масштабу скромнее прочих. И все же, если говорить о последней, представившей новый взгляд на весьма древнюю проблему правильных многогранников и конфигураций - сомневаюсь, что математику, который ей одной посвятил бы себя душой и телом, хватило бы жизни на то, чтобы ее исчерпать. Что касается первой из всех этих тем, топологических тензорных произведений и ядерных пространств, то она скорее играет роль нового инструмента, готового к использованию, чем основы для последующей разработки. При всем том, однако, до меня еще долетают - вплоть до этих последних лет - отрывочные отклики более или менее недавних работ, отвечающих (двадцать или тридцать лет спустя) на некоторые из вопросов, которые я тогда оставил неразрешенными.
Наиболее глубокая (на мой взгляд) среди этих двенадцати - тема мотивов, то есть та, что теснейшим образом связала анабелеву алгебраическую геометрию с йогой Галуа-Тейхмюллера.
С точки зрения технических возможностей инструментов, совершенно готовых и отшлифованных моими стараниями, и повседневного применения на различных «передовых участках» исследования в течение двух последних десятилетий, схемы и этальные и l-адические когомологии представляются мне среди прочих наиболее значительными. Я думаю, что уже сейчас у достаточно осведомленного математика не может быть никаких сомнений в том, что инструмент теоретико-схемный, как и вышедший из него /-адический, вошли в число серьезных достижений века, исполнивших свежими силами и обновивших нашу науку в ходе последних поколений.
можно сказать, что (с точностью до одной-двух оговорок{30}) они уже сейчас вошли в общую копилку, в чашу, полную опытом привычных знаний. Особенно в среде геометров «все-все-все» пьют из нее в наши дни, не замечая глотков (как это выходило у господина Журдена с прозой), ежедневно и ежечасно. Они стали как воздух, для тех, кто занимается геометрией - или арифметикой, алгеброй и анализом, хоть немного «геометрическими».
Эти двенадцать главных тем моего труда совсем не отделены друг от друга. Для меня они составляют вместе единство духа и цели, проходящее всегдашним настойчивым лейтмотивом музыкального фона через весь мой труд, как «записанный» черным по белому, так и не переложенный на слова. Сейчас, когда я пишу эти строки, мне словно бы слышится вновь - как призыв - нота, ведшая тему сквозь те три года бескорыстного («низачем»), страстного, уединенного труда, пора, когда меня еще не тревожил вопрос, есть ли где в мире математики, кроме меня: так сильны были чары, меня захватившие…
Это единство - не просто знак самого работника, отметивший все труды, что вышли из-под его руки. Темы связаны между собой бессчетным множеством нитей, тончайших и вместе с тем легко заметных. Они соединены и тесно перевиты друг с другом, но каждая из них распознается без труда, раскрываясь вдруг составной частью сложного контрапункта - в гармонии, которая собирает их всех в одно и придает любой из них смысл, живость движения и полноту, увлекая ее вперед в общем потоке. Каждая отдельная тема словно бы вышла из этой гармонии, и в ней же - ежесекундно - рождается вновь. Но ведь гармония сама, кажется, не более чем «сумма», «итог» составивших ее тем: в самом деле, они появились раньше. А я, сказать по правде, не могу побороть в себе чувства (без сомнения, нелепого), что каким-то образом именно эта гармония, еще не возникнув во плоти, но уже наверное ожидая своего часа внутри неведомого нам лона, среди других идей, готовых родиться - что она-то и побуждала выйти на свет одну за другой все эти темы, предназначенные обрести свой настоящий смысл лишь с ее появлением. И еще чудится мне, что именно ее голос, властный и настойчивый, взывал ко мне уже в те годы пылкого, зачарованного одиночества - на самом пороге моей юности…
Как бы то ни было, двенадцать ключевых тем моего труда все вместе, словно повинуясь тайному велению рока, сложились в одну симфонию - или, если взять другой образ, каждая из них оказалась воплощением одной из точек зрения, в совокупности составивших единое широкое видение.
Видение это начало выступать из тумана, а очертания его - становиться узнаваемыми, не раньше, чем к 1957-1958 гг., годам напряженного вынашивания идей{31}. Кажется странным, но это видение было настолько мне близко, до того ясно и несомненно, что раньше, чем год назад{32}, я и не задумывался о том, чтобы дать ему имя. (А ведь как раз одно из моих пристрастий - называть вещи, мной обнаруженные: это первейший способ в них разобраться…) Правда, что я не смог бы конкретно указать момент, пережитый мною как внезапное рождение
321957 г.
– тот самый, когда мне удалось настичь по горячему следу тему «Римана-Роха» (версия Гротендика), которая сразу же принесла мне «всеобщую известность». Это также год смерти моей матери, то есть резко выделенный в моей жизни - и один из наиболее интенсивно творческих, причем не на одной только математической ниве. Двенадцать лет уже шло тому, как все мои силы были вложены в математику. И я вдруг ясно почувствовал, что мои занятия сделали почти «полный оборот» по кругу, так что на часах, пожалуй, время их оставить и взяться за что-то другое. Очевидно, то была потребность духовного обновления, впервые тогда ко мне подступившая. Я собрался было стать писателем, и на многие месяцы прекратил всякую деятельность, связанную с математикой. Под конец я решил, что запишу черным по белому хотя бы те математические работы, какие у меня уже были начаты; без сомнения, дело нескольких месяцев, года самое большее…
Бесспорно, однако, что к безвозвратному скачку на иные круги я тогда еще готов не был. Всякий раз, как я ни пытался взяться снова за математический труд, выходило так, что это он меня захватывал, да накрепко. Еще на двенадцать лет, не выпуская!
Год, последовавший за этой паузой (1958), был, наверное, самым плодотворным для меня как математика. Это год появления двух центральных тем новой геометрии: бурного старта теории схем (предмет моего доклада на международном математическом конгрессе в Эдинбурге летом того же года) и возникновения понятия ситуса, то есть предварительной, технической версии важнейшего понятия топоса. Сейчас, в перспективе почти что тридцати лет, я могу утверждать, что то был воистину год рождения нового геометрического видения, последовавшего за вступлением в силу двух главных инструментов этой геометрии: схем (которые являют собой метаморфозу старого понятия «алгебраического многообразия») и топоса (представляющего результат преображения - еще более глубокого, чем в случае схем - понятия пространства).
Прогулка по творческому пути, или дитя и Мать
видения, или, оглянувшись назад, в теперешней перспективе узнать и выбрать такую минуту. Новое видение - нечто заведомо слишком обширное, чтобы появиться сразу, в один миг. Ему нужны долгие годы, если не целые поколения, чтобы, проникнув в душу, постепенно завладеть тем или теми, кто неотрывно, внимательно созерцает - как если бы два новых глаза в муках рождались позади прежних, привычных, призванные понемногу их заменить. И, опять-таки, видение слишком объемно, чтобы говорить о возможности уловить его, «схватить», как хватаешь первое же понятие, возникшее из-за поворота на твоей дороге. А значит, в итоге нет ничего удивительного в том, что мысль как-нибудь назвать вещь настолько широкую, близкую и оттого расплывчатую не могла появиться раньше, чем при взгляде уже с некоторого расстояния - по истечении промежутка, нужного ей, чтобы достичь настоящей зрелости.