В погоне за красотой
Шрифт:
После изрядной дозы общих рассуждений пора вернуться к пятому постулату.
Я уже не раз говорил (и прошу прощения у читателей — еще не раз буду повторять), что все попытки доказательств стимулировались, по существу, единственной причиной: он не «смотрелся», как говорят художники.
Он возмущал эстетические чувства ученых своей сложностью. И в древней Греции, и в Персии, и в Европе реакция была единодушна.
Поглядите, как прелестно негодует один из величайших математиков арабского мира, Омар Хаййам.
«…Евклид считал, что причиной пересечения прямых является то, что два угла (внутренние односторонние углы. — В. С.)
Считая так, он был прав, но это может быть доказано только при помощи дополнительных рассуждений. (Хаййам думал, что он доказал пятый постулат. — В. С.) …Евклид же принимал эту предпосылку и основывался на ней без доказательства. Клянусь жизнью… здесь необходима помощь разума, и это его (то есть разума, а не Евклида. — В. С.) право…
Как Евклид позволил себе поместить это утверждение во введении (имеется в виду — выбрать как аксиому. — B. C.) в то время, как он доказывал гораздо более простые факты…»
Посмотрим же, как велась борьба с пятым постулатом. Было три канонических пути.
1. Открыто и явно предлагался какой-либо постулат, эквивалентный Евклидову. Эти авторы образуют «скромное», или «пессимистическое» направление.
2. Доказательство от противного (reductio ad absurdum) — один из самых изящных и мощных логических методов решения математических задач. Здесь новых постулатов не вводили.
Формулировалась теорема, противоположная по своему смыслу пятому постулату либо какому-нибудь его эквиваленту, а далее начинали развивать разнообразные следствия в надежде, что рано или поздно придут к какому-нибудь противоречию. Если оно будет получено, то тем самым доказывается, что пятый постулат вытекает из остальных аксиом, — и задача решена.
Это направление «самонадеянное» или «оптимистическое».
3. Наконец, группа «эклектиков».
Они доказывали какую-либо теорему, эквивалентную пятому постулату. Доказывали, используя неявно и незаметно для себя какой-либо другой эквивалент постулата Евклида.
Тяжелее всех было «на направлении № 2» — «оптимистам». Они все дальше и дальше тянули цепочку своих теорем, все больше и больше запутывались в следствиях, так и не находя противоречия.
С сегодняшних наших позиций мы понимаем, что эта группа математиков, по существу, доказывала начальные теоремы неевклидовой геометрии, что они были на наиболее обнадеживающем пути, потому что только так можно было прийти к идее независимости Евклидова постулата от остальных. Но им-то от этого не было легче.
Как правило, в итоге они либо отчаивались, либо перекочевывали в лагерь «эклектиков».
Надо заметить, что многие из доказательств «эклектической группы» великолепны по своему остроумию.
Если чуть огрубить реальную историю, то можно сказать, что в основном пробовали доказывать две главные разновидности
1. Перпендикуляр и наклонная пересекаются.
2. Сумма углов треугольника равна .
На этих путях было найдено несколько очень наглядных эквивалентов пятого постулата. Иногда авторы понимали, что нашли эквивалент; иногда они, заблуждаясь, думали, что доказали пятый.
Вот несколько «эрзацев» [2] .
1. «Геометрическое место точек, равноудаленных от данной прямой, есть прямая».
2. Расстояние между двумя непересекающимися прямыми остается ограниченным [3] .
3. Существуют подобные фигуры.
4. Если расстояние между двумя прямыми сначала убывает при движении вдоль этих прямых в каком-то направлении, то оно не может начать увеличиваться до тех пор, пока прямые не пересекутся.
2
Формулируя эквиваленты пятого постулата, я всегда буду подразумевать, что все происходит в одной плоскости, и не буду это специально оговаривать.
3
Это менее жестокое требование, чем в № 1.
И так далее.
Всего насчитывают более 30 формулировок.
Для развлечения читателей я приведу несколько «доказательств» пятого постулата без каких-либо критических комментариев. Читатели могут (при желании, конечно) установить самостоятельно, какой постулат использовал тот или иной автор вместо пятого.
1. Доказательство Прокла. Одно из самых первых, одно из самых простых и самых остроумных.
Прокл берет за основу утверждение Аристотеля: При продолжении двух прямых от точки пересечения расстояние между ними неограниченно возрастает.
Он считает, что это аксиома.
На самом деле это теорема, причем теорема, совершенно независимая от пятого постулата. Так что этой теореме можно полностью доверять. Она принадлежит к «абсолютной геометрии» и, следовательно, как мы понимаем сегодня, справедлива и в геометрии Евклида и в геометрии Лобачевского. А постулат — эквивалент Прокла — другой.
Вот и доказательство. Точнее, его эскиз. (Ни здесь, ни в следующем доказательстве я не буду придерживаться строгой, формальной схемы.)
Проведем две заведомо параллельные прямые. То есть такие, что <A + <C1 = .
Проведем третью прямую. Как? Видно на чертеже, она показана пунктиром.
Расстояние между пунктирной прямой и верхней (при движении влево) неограниченно возрастает.
Следовательно, оно когда-нибудь превысит расстояние между параллельными.
Ну, а тогда ясно, что пунктирная прямая пересечет нижнюю.
Предлагается сформулировать все вполне строго и указать, какой постулат неявно использовал Прокл.