Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Следует пятый постулат.

Глава 3

Пятый постулат

Вот он, постулат V.

Если при пересечении двух прямых, лежащих в одной плоскости, третьей сумма внутренних односторонних углов меньше 2d (180°), то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше 2d.

Чего стоит одна формулировка! Во-первых, масса слов. Во-вторых, сколько геометрических понятий! Человек, незнакомый с основами геометрии,

вообще ничего не поймет. Постулат совершенно не похож на предыдущие. Он звучит как теорема. И не слишком простая. Он явно выглядит странно. И прежде чем мы пойдем дальше, позвольте преклониться перед Евклидом.

Хотя у меня, естественно, нет доказательств, я убежден: пятый постулат сознательно сформулирован в столь нехорошей форме. И в этом таится великая мудрость «творца «Начал».

Из всех возможных формулировок пятого постулата Евклид выбрал наисложнейшую, наинеуклюжейшую. Почему? Чтобы ответить, посмотрим, как он строит геометрию.

После аксиом и постулатов Евклид, естественно, доказывает теоремы. И 28 первых теорем он доказывает, игнорируя пятый постулат. Для этих теорем он не нужен. Они — эти «28» — безразличны к пятому постулату. Они, как говорят, относятся к абсолютной геометрии.

Среди «28» есть и теорема о внешнем угле треугольника. У Евклида она идет за № 16. Заключают список, как, вероятно, догадались проницательные читатели, теоремы № 27 и № 28. Эти теоремы содержат так называемую «прямую теорию» параллельных линий. Докажем их, объединив в одну.

Пусть две прямые пересекаются третьей в точках Р и Р1.

Утверждается: если <А = <A1, прямые параллельны.

Доказываем от противного. Допустим сначала, что прямые пересеклись в точке C. Тогда возник РР1С, у которого внешний <A1 равен внутреннему, не смежному с ним <А. Но это невозможно. Теорема — «Внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним» — не допускает этого! Следовательно, прямые не могут пересечься при продолжении направо.

Есть вторая возможность. Прямые пересеклись в точке C1. Тогда возникает РР1С1. Для него — <B внешний, а <B1 — внутренний, не смежный с <B.

Но <B = <A; <B1 = <A1 как вертикальные.

Однако <A = <A1 — это дано в условии; значит, <B = <B1.

И по существу, все закончено.

Для гипотетического треугольника РР1С1 <В внешний, а <B1

внутренний, не смежный с ним. И они равны. Но этого не может быть. Значит, РР1С1 существовать не может. И значит, прямые не пересекаются и в точке С1.

Теорема доказана полностью.

Конечно, читателям ясно, что В и В1 были введены, чтобы для гипотетического РР1С1 полностью скопировать ситуацию, которая сразу возникла для РР1С (для первого треугольника).

Теперь, чтобы полностью повторить Евклида, введем в наш рисунок еще четыре угла. Какие — видно на чертеже.

Из равенства <A = <A1 немедленно следует целое семейство равенств.

1. <B = <A1; <C = <D1 — эти углы называются «внешними накрест лежащими».

2. <А = <B1; <D = <С1 — это «внутренние накрест лежащие».

3. <D = <D1; <C = <С1; <B = <B1; и, само собой, <A = <A1. Все эти углы называются соответственными.

<D + <B1 = ;

<А + <С1 = ;

<С + <А1 = ;

<B + <D1 = .

Здесь выступают внутренние и внешние односторонние углы.

Подчиняясь общепринятому порядку, я привел все эти двенадцать равенств и несколько сожалею об этом. Обилие равенств может затуманить ясный вопрос. А вообще достаточно любого соотношения. Любого — на выбор. Одиннадцать остальных сразу получаются, если справедливо хоть одно. Мы «танцевали» от равенства <A = <A1. Можно было идти от любого другого.

Мы доказали, что, если выполняется любое из наших двенадцати равенств, прямые параллельны. Это и есть две теоремы Евклида: № 27 и № 28.

Кстати, теперь уместно вспомнить, что теорема о параллельности двух перпендикуляров к общей прямой — первая теорема, доказанная в этой книге, — есть частный случай нашей теоремы о параллельных.

Доказав теорему, геометр всегда исследует обратную теорему. В обратной теореме данным считается то, что доказывалось в прямой, а доказывается, естественно, то, что в прямой считалось данным.

Поделиться:
Популярные книги

Огни Эйнара. Долгожданная

Макушева Магда
1. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Эйнара. Долгожданная

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Возвращение Безумного Бога 5

Тесленок Кирилл Геннадьевич
5. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 5

Ненужная жена

Соломахина Анна
Любовные романы:
любовно-фантастические романы
5.86
рейтинг книги
Ненужная жена

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Новая мама в семье драконов

Смертная Елена
2. В доме драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Новая мама в семье драконов

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9