Чтение онлайн

на главную

Жанры

Вопрос жизни. Энергия, эволюция и происхождение сложности
Шрифт:

Это говорит о том, что окислительно-восстановительные процессы должны быть важны для жизни в любом месте Вселенной. Можно представить и другие источники энергии, но, учитывая, что окислительно-восстановительные процессы необходимы для восстановления углерода, а у дыхания столько преимуществ, не удивительно, что жизнь на Земле существует именно за счет окислительно-восстановительных процессов. Но куда менее понятно, почему основой дыхания служит градиент протонов на мембранах. Дыхательные белки могут передаваться путем горизонтального переноса, взаимозаменяться и объединяться, потому что они составляют общую “операционную систему”, ядро которой – хемиосмотическое сопряжение. Но почему окислительно-восстановительные процессы должны быть связаны с протонными градиентами? Отсутствием вразумительного ответа на этот вопрос частично объясняется неприятие идей Митчелла и “войны” тех далеких лет [28] . За последние полвека мы многое узнали о том, как живое использует протоны. Но пока не узнаем, почему оно их использует, мы не сможем предсказать многие свойства жизни на Земле – или где-то еще во Вселенной.

28

Теория

Митчелла в Британии и в целом на Западе не получила поддержки, но ею заинтересовались в СССР. Первые эксперименты, подтвердившие правоту Митчелла, были поставлены будущим академиком В. П. Скулачевым. – Прим. науч. ред.

Главное – это протоны

Появление хемиосмотического сопряжения – большая загадка. Вся жизнь хемиосмотична, а значит, хемиосмотическое сопряжение возникло очень рано. Если бы оно появилось позднее, трудно объяснить, как и почему оно стало универсальным [29] – почему протонные градиенты пришли на смену всему остальному. Такая универсальность встречается удивительно редко. Все живые организмы имеют общий генетический код (с некоторыми исключениями, подтверждающими правило). Некоторые основные информационные процессы также универсальны и консервативны – например образование РНК при транскрипции на матрице ДНК и синтез белка рибосомами на матрице этой РНК. Но отличия между бактериями и археями поразительны. Как вы помните, археи и бактерии – это два огромных домена прокариот. Внешне они почти неотличимы друг от друга, но биохимически и генетически значительно различаются.

29

Хемиосмотическое сопряжение позволяет использовать мелкие порции энергии, что дает огромное преимущество. Об этом автор упоминает в гл. 5, в разделе “Почему бактерии остаются бактериями”. – Прим. науч. ред.

Взять, например, репликацию ДНК. Казалось бы, она должна быть столь же универсальной, как и генетический код. Но, оказывается, черты этого процесса, включая большинство участвующих в нем ферментов, у бактерий и архей сильно различаются. Так же дело обстоит с клеточной стенкой – жесткой внешней оболочкой, которая защищает нежную клетку снаружи: ее химический состав у бактерий и архей абсолютно разный. Биохимические пути брожения также различны. Даже клеточные мембраны, необходимые для хемиосмотического сопряжения (а это основа мембранной биоэнергетики), у бактерий и архей различаются по химическому составу. Выходит, что и структура барьеров, отделяющих клетку от внешней среды, и репликация наследственного материала не являются глубоко консервативными. А ведь это едва ли не самое важное в жизни клеток! Лишь хемиосмотическое сопряжение универсально: сколь сильно ни различались бы организмы, его они используют всегда [30] .

30

Рибосомы, генетический код и белковый синтез есть у всех без исключения клеток, а хемиосмотическое сопряжение исчезает у некоторых бродильщиков и внутриклеточных паразитов. Так что оно – не самое универсальное свойство жизни. – Прим. науч. ред.

Различия между археями и бактериями действительно очень глубоки, поэтому их происхождение вызывает много вопросов. Если предположить, что их общие свойства унаследованы от общего предка, а различия появились независимо, каким должен был быть этот общий предок? Увы, о нем можно сказать очень мало. Мы можем получить лишь очень расплывчатое представление, каким он был: отчасти похожим на современную клетку, а в остальном… Каким же он был в остальном? Мы можем различить лишь смутный биохимический силуэт – известно только, что у него имелись транскрипция, трансляция с участием рибосом, АТФ-синтаза, отдельные фрагменты биосинтеза аминокислот. Этим общие признаки бактерий и архей исчерпываются, а вместе с ними и черты общего предка.

А как обстоит дело с мембранами? Мембранная биоэнергетика универсальна, мембраны – нет. Можно вообразить, что последний общий предок имел мембрану бактериального типа, а археи видоизменили ее, чтобы приспособиться (так, мембраны архей устойчивее при высоких температурах). На первый взгляд, идея выглядит правдоподобной, но есть две серьезные проблемы.

Во-первых, большинство архей не является гипертермофилами и обитает в умеренных условиях, где специфические мембранные липиды не предоставляют очевидного преимущества. И наоборот, многие бактерии счастливо живут в горячих источниках и их мембраны отлично справляются с высокими температурами. Археи и бактерии почти в любой среде обитают бок о бок и даже входят в симбиотические отношения. Зачем же одной из этих групп когда-то могло понадобиться менять все мембранные липиды – несмотря на связанные с этим процессом серьезные проблемы? Если такая трансформация мембран возможна, то почему мы не наблюдаем полного замещения мембранных липидов, когда клетки адаптируются к изменениям среды? Ведь это должно быть гораздо проще, чем заново изобретать новые липиды. Почему бы некоторым бактериям, живущим в горячих источниках, не обзавестись архейными липидами?

Во-вторых, главное различие мембран архей и бактерий напоминает случайность: бактерии используют один оптический изомер (зеркальную форму) глицерола, а археи – другой [31] . Даже если археи действительно заменили все свои липиды, чтобы приспособиться к высоким температурам, сложно представить причину, в силу которой могло понадобиться менять один оптический изомер глицерола на другой. Это просто извращение. Ведь фермент, который производит левостороннюю форму глицерола, весьма далек от фермента, который участвует в образовании правосторонней формы. Чтобы перейти с одного изомера на другой, нужно сначала “изобрести” новый фермент (чтобы делать новый изомер), а затем настойчиво избавляться от старого (полностью функционального) фермента в каждой клетке, несмотря на то, что новый вариант не предоставляет никакого эволюционного преимущества. Мне не верится, что такое могло быть. Но если ни один тип липидов не заменялся на другой, то какой была мембрана у последнего общего предка? Она должна была сильно отличаться от всех современных мембран. Почему?

31

Липиды состоят из гидрофильной головки и двух-трех гидрофобных “хвостов” (у бактерий и эукариот их роль играют жирные кислоты, у архей – изопреноиды). За счет этих частей липиды способны формировать не только капли, но и бислои, причем с большей вероятностью. Головка и у архей, и у бактерий представлена глицеролом, но в разных зеркальных формах. Это интересным образом дополняет тот факт, что все живое использует левые аминокислоты и правые сахара в ДНК. Такую асимметрию часто объясняют тем, что один из изомеров оказался предпочтительней еще на абиотическом уровне, а отбор на уровне биологических ферментов, как считают, не сыграл в этом особой роли. Использование бактериями и археями разных оптических изомеров глицерина может свидетельствовать о том, что случайность и отбор все же имели значение.

Сама идея, что хемиосмотическое сопряжение возникло рано, спорна. Одно из затруднений – очень высокая сложность механизма. Мы успели отдать должное гигантским дыхательным комплексам и АТФ-синтазе – поразительным молекулярным машинам с роторами и поршнями. Могли ли они появиться на заре эволюции, когда еще не было даже ДНК-репликации? Конечно нет! Такова первая мысль, но надо понимать, что этот ответ продиктован чувствами. АТФ-синтаза не намного сложнее рибосомы, а ведь никто не станет спорить, что рибосомы должны были возникнуть рано [32] . Вторая проблема – сама мембрана. Даже если не задумываться о том, какого типа она была, вопрос о ранней сложности возникает и здесь. У современных клеток хемиосмотическое сопряжение работает лишь в том случае, если мембрана непроницаема для протонов. Но все эксперименты с реконструкцией древних мембран показывают, что они беспрепятственно пропускали протоны [33] . Удерживать протоны снаружи – невероятно сложная задача, и проблема в том, что хемиосмотическое сопряжение, похоже, остается бесполезным без множества сложных белков, встроенных в непроницаемую для протонов мембрану. В этом и только в этом случае выполняет свою функцию хемиосмотическое сопряжение. Так в каком же, черт возьми, порядке возникли эти составляющие? Это проблема курицы и яйца. Какой смысл учиться перекачивать протоны, если нельзя воспользоваться градиентом? И зачем учиться использовать градиент, если вы не умеете его создавать? В гл. 4 я предлагаю возможное решение этой проблемы.

32

Первые рибосомы могли состоять только из РНК, для синтеза которой не нужны сложные машины. А для сборки любого белка нужна сложная рибосома. Поэтому АТФ-синтаза не может быть старше рибосомы. – Прим. науч. ред.

33

При этом древние мембраны непроницаемы для натрия. Это один из аргументов в пользу того, что натриевая энергетика древнее протонной. – Прим. науч. ред.

Я заканчиваю главу несколькими большими вопросами. Почему жизнь на Земле появилась так рано? Почему она на несколько миллиардов лет застыла на одном уровне морфологической сложности? Почему сложные эукариотические клетки за 4 млрд лет возникли лишь единожды? Почему у всех эукариот имеется целый ряд особенностей, которые никогда не встречаются у бактерий и архей – от наличия двух полов до старения? И почему все живое сохраняет энергию в форме протонных градиентов на мембранах? Как и когда начался этот процесс?

Я думаю, эти два ряда вопросов связаны. Ниже я докажу, что появление жизни на Земле инициировал природный протонный градиент, поэтому это должно было произойти в специфических условиях. На самом деле такие условия встречаются почти во всей Вселенной: горная порода, вода и углекислый газ (CO2). Я покажу, что хемиосмотическое сопряжение миллиарды лет удерживало эволюцию на прокариотическом уровне и лишь однажды, когда одна бактерия каким-то образом проникла в другую, жизнь вышла из энергетического застоя. Эндосимбиоз дал начало эукариотам, размеры генома которых выросли на порядки, предоставляя материал для морфологической сложности. Я докажу, что многие странные свойства эукариот обусловлены взаимоотношениями клетки-хозяина и ее эндосимбионтов, которые впоследствии стали митохондриями. Похоже, эволюция идет одними путями, которые пролегают между барьерами, одинаковыми во всей Вселенной. Не думаю, что прав во всем, но, надеюсь, общая картина верна – и тогда, возможно, из моих рассуждений вырастет новая биология, которая предскажет больше. Может быть, однажды мы сможем предсказать, какой должна быть жизнь в любом месте Вселенной, опираясь на химический состав космического пространства.

Часть II

О жизни

Глава 3

Энергия и начало жизни

Старинные водяные мельницы и современные гидроэлектростанции работают благодаря направленному движению потоков воды. Если перегородить реку плотиной и оставить в ней небольшое отверстие, напор воды будет гораздо мощнее и его хватит, чтобы крутить мельничное колесо. А если позволить потоку течь по широкому руслу, напор уменьшится.

Клетки живых организмов работают по тому же принципу. Метаболический путь можно сравнить с руслом, по которому “течет” углерод. В метаболическом пути последовательность химических реакций катализируется рядом поочередно действующих ферментов. Продукт реакции, катализируемой первым ферментом, является субстратом для второго, и т. д. Ферменты служат как бы берегами, в которых течет углерод, и направляют его ход. Органическая молекула входит в метаболический путь, подвергается ряду химических превращений и выходит уже в виде другой молекулы. Последовательность реакций метаболического пути надежно воспроизводится раз за разом, и исходные вещества и продукты однозначно соответствуют друг другу. В клетке одновременно функционирует множество метаболических путей. Это похоже на сеть взаимосвязанных водяных мельниц, где вода всегда с максимальным напором течет по пересекающимся каналам. Благодаря оптимальному распределению потока для роста клеток требуется гораздо меньше углерода и энергии, чем если бы поток не был ограничен. Вместо того чтобы беспорядочно участвовать в реакциях и на каждом шагу терять энергию, молекулы проходят определенный путь превращений – благодаря работе ферментов. Клеткам не нужна река, бегущая к морю: для работы их “мельниц” достаточно маленьких струек. С точки зрения энергетики, мощь ферментов заключается не столько в том, что они ускоряют реакции, сколько в том, что они делают это специфично, максимизируя выход.

Поделиться:
Популярные книги

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Аномалия

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Аномалия

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й