Все формулы мира
Шрифт:
Нас в первую очередь будут интересовать формулы в физике (законы природы) и стоящая за ними математика, обеспечивающая аппарат манипулирования. Вместе это страшная сила. Как пишет Михаил Громов, «математика заполняет своим огнем все, что зовется физическими науками: облака, скрывавшие от нас то, что теперь мы пишем как законы природы, рассеиваются в лучах такой физики» [4] .
Сама идея законов природы довольно нетривиальна. На первом шаге речь идет о том, что мы можем выявить в природе строго выполняющиеся закономерности, которые можно записать в виде математических соотношений. Отсюда один шаг до восприятия мира как машины с четкой предсказуемостью всех будущих событий. Интересно, что дальнейшее движение «той же тропой» привело в итоге к отказу от строгого детерминизма механистических моделей благодаря, например, созданию таких теорий, как хаотическая динамика и квантовая механика. Но в начале пути строгого математического описания природы (без божественного вмешательства, например) мы видим именно детерминизм.
4
.
Как бы то ни было, можно сказать, что настоящая наука появилась, когда ученые начали предпринимать попытки выявить именно законы природы. Эта концепция требует веры в то, что естественные процессы происходят по неким неизменным правилам, т. е. что мы не живем в мире случайностей и чудес (возможно, с оговоркой, что нечто, кажущееся в данный момент чудом, найдет свое объяснение в рамках более общего закона природы). Если исходить из этой точки зрения, то одним из первых ученых является Евдокс Книдский (IV век до н. э.) [5] . Ему принадлежит первая серьезная попытка создать модель «Вселенной» (в том объеме, в каком ее воспринимали древние греки), т. е. представить движение небесных тел (Солнца, Луны, пяти видимых невооруженным глазом планет) в виде набора концентрических сфер, можно сказать «шестеренок». И речь не идет о том, чтобы ограничиться словесным описанием. Целью Евдокса Книдского было именно создание четкой конструкции, позволяющей рассчитывать траектории небесных объектов. Такую модель при желании можно воплотить в металле в виде механического устройства, если бы это позволяли технические возможности того времени. Тогда можно было бы, «вращая ручку», прокручивать движение планет в будущее или прошлое, демонстрируя их конфигурацию в любой момент времени. При этом очевидно, что все это бесконечно далеко от магии. Евдоксу Книдскому не могло бы прийти в голову, что, создав правильную модель и воплотив ее в бронзе, он сможет «подкручивать» шестеренки, меняя тем самым движение светил. Иными словами, законы природы представлялись греческому ученому некой объективной реальностью, существующей независимо, а потому не подверженной магическому воздействию.
5
Примерно на полтора столетия раньше Пифагор и его ученики также выявили несколько важных закономерностей. Однако этой школе явно мешал чрезмерно идеологизированный подход, т. е. некоторая концептуальная зашоренность в подходе к изучению природных явлений.
Представление о мире как о гигантском часовом механизме, с одной стороны, очень вдохновляющее, а с другой – отчасти пессимистическое. Сделаем небольшое отступление. В наши дни прогресс в математике заметно отличается от прогресса в естественных науках (будем для определенности говорить о физике). В физике мы понимаем, что практически любой фундаментальный теоретический результат в той или иной степени неокончателен, неполон. Мы всегда работаем с приближенными моделями, обладая недостаточной информацией. На смену ньютоновской механике пришли теория относительности (даже две!) и квантовая механика. Надеемся, их сменит какой-то вариант квантовой гравитации. Будет ли это «окончательной теорией»? Мы не знаем, мы сомневаемся. В математике, если теорема доказана, то она доказана. Это результат на века. Заменить можно только математику целиком (да и то все старые результаты останутся верными в рамках исходной концепции, как шахматные композиции, если вдруг поменять правила игры). Вернемся к механистической картине мира. Представляется, что ощущения ученых, занимавшихся физикой в XVII–XVIII веках, скорее походили на ощущения математиков, только были глобальнее, поскольку они, что очевидно, непосредственно связаны со всей большой Вселенной. Работавшие в те времена физики вполне могли представлять, что напрямую постигают истинную структуру мира, божественный замысел (если им была нужна эта гипотеза). Законы природы, если они представлялись надежно установленными, выглядели окончательными и не подлежащими пересмотру.
Идея законов природы, подчиняющихся математическим закономерностям, еще более нетривиальна. Именно на этом основано утверждение Юджина Вигнера о непостижимой эффективности математики [6] , к которому мы будем неоднократно возвращаться. Ведь одно дело – провести эксперименты или наблюдения, а затем на их основе сформулировать закон в виде математического выражения, и совсем другое – взять математическую формулировку закона, добавить новые гипотезы, провести некоторые математические операции и получить новый, доселе неизвестный закон природы, который потом можно проверить и найти полное совпадение теоретического предсказания с экспериментальным результатом!
6
Статья Ю. Вигнера «Непостижимая эффективность математики в естественных науках» доступна в переводе в журнале «Успехи физических наук» за 1968 г. См.: https://ufn.ru/ru/articles/1968/3/f/
Здесь начинает проявляться одна из «магических» особенностей математических формул в роли законов природы. Что-то там написав на бумаге (т. е. проделав манипуляции с математическими символами), можно предсказать положение неизвестной планеты и некоторые из ее свойств, а можно –
Итак, многие люди боятся формул и считают их чем-то сродни магии, а потому, не понимая смысла, относятся к печатной странице, исписанной математическими выражениями, со специфическим уважением. Статья по теоретической физике может выглядеть для них как некий странный артефакт, принципиально отличающийся от страницы обычного текста на непонятном языке.
А. В ИСТОРИИ ФИЗИКИ ЕСТЬ НЕМАЛО ПРИМЕРОВ ТОГО, ЧТО ОПИСАНИЕ РЯДА ЯВЛЕНИЙ, КАЗАВШИХСЯ НЕ СВЯЗАННЫМИ ДРУГ С ДРУГОМ, УДАЛОСЬ ПРОВЕСТИ В РАМКАХ ОБЩЕГО ПОДХОДА. ФИЗИЧЕСКАЯ РЕАЛЬНОСТЬ ПРЕДСТАВЛЯЕТСЯ ЕДИНОЙ СТРУКТУРОЙ, ЭЛЕМЕНТЫ КОТОРОЙ ФУНКЦИОНИРУЮТ ПО ЕДИНЫМ ПРАВИЛАМ. ДАЛЕКО НЕ ВСЕ ВЗАИМОСВЯЗИ ВНУТРИ ЭТОЙ СТРУКТУРЫ НАМ ИЗВЕСТНЫ. ОДНАКО РАБОЧАЯ ГИПОТЕЗА СОСТОИТ В ВОЗМОЖНОСТИ ПОСТРОЕНИЯ ЕДИНОЙ ТЕОРИИ, ИЗ КОТОРОЙ ЗАКОНЫ ДЛЯ ВСЕХ КОНКРЕТНЫХ ЗАВИСИМОСТЕЙ МЕЖДУ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ МОГУТ БЫТЬ ВЫВЕДЕНЫ С ПОМОЩЬЮ МАТЕМАТИЧЕСКИХ МЕТОДОВ.
Б. ИСПОЛЬЗОВАНИЕ МАТЕМАТИКИ ПОЗВОЛЯЕТ НА ОСНОВЕ УЖЕ ВЫЯВЛЕННЫХ ВЗАИМОСВЯЗЕЙ МЕЖДУ РАЗЛИЧНЫМИ ПРОЦЕССАМИ И ЯВЛЕНИЯМИ ОБНАРУЖИВАТЬ РАНЕЕ НЕИЗВЕСТНЫЕ СВОЙСТВА ФИЗИЧЕСКИХ ОБЪЕКТОВ, ПРЕДСКАЗЫВАТЬ ПОКА НЕ НАБЛЮДАВШИЕСЯ ЯВЛЕНИЯ, А ТАКЖЕ ФОРМУЛИРОВАТЬ НОВЫЕ ЗАКОНЫ ПРИРОДЫ.
Глава 2
Три доски
Представим себе три доски в университетской аудитории. Все они плотно заполнены формулами, но отличаются по смысловой нагрузке. Однако для многих неискушенных зрителей эти доски выглядят практически одинаково. Дело в том, что определить, в каких надписях есть смысл, в каких – нет, а на какой доске отражена некая единая идея, может быть затруднительно.
В данном случае первая доска заполнена абсолютной абракадаброй. На ней написаны несуществующие формулы – случайные сочетания математических символов и букв латинского и греческого алфавитов. На второй изображены известные уравнения, никоим образом не связанные друг с другом, и трудно представить себе контекст, в котором они стали бы элементами единого сюжета. Наконец, последняя доска содержит последовательный вывод некоего закона, т. е. каждое уравнение связано с предыдущим и в итоге мы получаем осмысленный и важный результат.
Давайте сравним чувства, возникшие при взгляде на эти три доски, с ощущениями, которые появились бы у нас в случае, если бы они были заполнены текстом на неизвестном языке. Снова одна доска была бы исписана случайным набором букв (разумеется, с сохранением разбиения на слова, синтаксисом и т. п.), вторая содержала бы реальные слова, но текст выглядел бы как бред, а третья представляла бы собой связный рассказ. Впечатления от доски с формулами и от доски с текстом, как правило, различны. Текст не впечатляет, мы слишком к нему привыкли. Только утверждение, что он имеет дело с древним языком исчезнувшей цивилизации (для любителей экзотики – с инопланетным языком) или секретным шифром, может заставить среднего человека вглядываться в каракули. Тем и притягателен манускрипт Войнича [7] . Тем и красив кодекс Серафини [8] . Мы думаем, что там скрыт какой-то особый смысл (даже зная, что у Серафини его нет, а скорее всего, нет и в манускрипте Войнича [9] ). Примерно так же на многих действует страница формул.
7
Иллюстрированный кодекс, написанный на неизвестном языке неизвестным автором предположительно в XV веке. Расшифровать текст не удается. Скорее всего, это и невозможно, поскольку он не имеет смысла.
8
Кодекс Серафини (Codex Seraphinianus) – иллюстрированный кодекс, созданный в 1970-е гг. архитектором Луиджи Серафини. Представляет собой вымышленную иллюстрированную энциклопедию несуществующего мира. Для ее создания автор придумал специальное письмо. Однако текст не имеет смысла, он не является результатом шифровки или использования искусственного языка.
9
Отметим, что регулярно появляются заявления о расшифровке кодекса Войнича. Последнее (на момент написания книги) появилось в мае 2019 г., когда Джерард Чешир из Университета Бристоля заявил о своем успехе (см.:. Однако и оно сразу же подверглось жесткой критике (см.: и вскоре было отозвано.
Они могут быть просто красивыми. У большинства людей сам вид сложных комбинаций непонятных символов вызывает душевный трепет и ощущение тайны. Магия… Но формула – не заклинание. Это выражение вполне определенной связи между конкретными параметрами. Есть формулы очень известные (такие как E = mc2), есть менее узнаваемые. Некоторые из них выражают наиболее фундаментальные законы, лежащие в основе современного понимания (а значит, и описания) мира.