Всемирный разум
Шрифт:
В сущности, так называемые малые сети (small-world networks) – это выражение используется в наши дни как математический термин – стали вездесущими. Даже 302 нейрона простейшего существа C. elegans (свободноживущая нематода, круглый червь. – Прим. пер. ) – образуют ту же малую сеть [137] . Благодаря им мозг может легко отыскивать ближайшие соответствия, что помогает быстро устанавливать отношения между объектами и их ментальными представлениями. Поиск взаимосвязей и отношений объектов ведет нас и к поиску аналогий. Создавая их между двумя объектами, вы акцентируете фундаментальные признаки сходства и принимаете во внимание частные различия.
Таким образом, чтобы правильно интерпретировать активность мозга, нужно создать компьютер, который бы мыслил как мозг. Подобно ему, такая машина должна иметь множество блоков
Креативные усилия – такие как, например, создание гипотез – сегодня компьютерам недоступны. Однако Хокинс настаивает на том, что творчество основывается на использовании механизмов предвидения. Мыслящий таким образом математик с готовностью берется за новую задачу, предвидя, что она должна иметь некоторое сходство с прежними, следы решения которых хранятся в малых нейронных сетях его мозга. Иными словами, в поисках ответов на новые вопросы используются уже имеющиеся знания, основанные на взаимосвязях и аналогиях. А последние обязаны своим появлением фундаментальному механизму ментального прогнозирования. Хокинс не видит никаких теоретических препятствий для создания такого компьютера, который воспроизводил бы нейронные структуры, отвечающие в головном мозге за предвидения и предсказания. Инженеры в США уже начали широкомасштабные эксперименты по разработке микросхем (чипов), архитектура которых подобна организации нейронных цепей. В Стэнфорде, например, исследователи уже создали «нейроморфический микрочип» («neuromorphic microchip»), самоорганизующаяся схема которого подобна зрительной коре лабораторных животных [138] .
Создание компьютеров, работающих подобно человеческому мозгу (brainlike computers), должно серьезно упростить процесс извлечения информации из оного и передачи ее другому. Предположим, у вас уже есть один из таких компьютеров и вы связаны с другим человеком посредством WWM – Всемирной Сети Разума. В любой момент вам будут доступны визуальные образы, рождающиеся в сознании вашего партнера. Вот вы видите кошку на тротуаре. Специальное оборудование, использующее достижения оптогенетики, позволяет также наблюдать за возбуждением некоторых нейронных цепей в неокортексе вашего мозга. Аппаратура видит активацию тех нейронов, которые связаны с инвариантной репрезентацией «кошка». Дабы дать знать вашему другу, что вы видите кошку, компьютер посылает на его имплантированное устройство буквы, несущие знаковую информацию, – КОШКА. Или, если быть более точным, ваш партнер видит воспоминание о кошке, хранимое в его собственной нейронной схеме и теперь активированное в виде зрительного образа. (Конечно, это весьма упрощенное описание, и в следующей главе мы более детально рассмотрим, каким образом активируются и расшифровываются личные воспоминания).
Правда, немало важных подробностей будет упущено. Например, порода кошки, окрас, поза, поведение в определенный момент времени и так далее. Получатель вашего «сообщения» должен видеть свой собственный образ кошки, синтезированный его мозгом на основе личных воспоминаний. И, вероятно, в чем-то эта кошка будет отличаться от той, которую видите вы. Но важна в данном случае ключевая информация – ваш партнер будет знать главное: друг видит кошку.
Или, вернее сказать, некую «упрощенную версию» того, что видите вы сами, – без совпадения в деталях. Однако не забудем, что чем более инвариантны репрезентациии, создаваемые с помощью имплантированного оптогенетического устройства, тем больше их может быть послано в мозг получателя информации. Тут важна не вся полнота изображения, а то, чтобы «картинка» в нужный момент оказалась достаточно богата зрительной информацией для передачи. Получатель образа кошки, фактически, должен создавать ее изображение в собственном сознании – и чем больше деталей передает ваше оптогенетическое устройство, тем богаче будет картинка, воссоздаваемая мозгом вашего партнера. Точного соответствия передаваемого и воссоздаваемого на этой основе изображения никогда не будет. Более того, какие-то подробности могут быть привнесены в зрительную репрезентацию сознанием получателя картинки – и некоторые из них могут оказаться неверными. Например, человек может домыслить общую картину, представляя себе кошку на тротуаре где-то в пригороде, в то время как вы находитесь в нижней части Манхэттена. Однако в целом картинка будет близка к оригиналу достаточно для того, чтобы соответствовать целям коммуникации. Как хороший рассказчик создает у слушателей эффект присутствия, не прибегая к описанию всех подробностей, так и получатель информации благодаря мозговому импланту будет ощущать себя находящимся в определенном месте.
Инженерная разработка и создание специального оборудования
В настоящий момент мы можем наметить основные направления в разработке оборудования, обеспечивающего коммуникацию «сознание к сознанию». Если на некоторое время оставить в стороне вопросы о том, каким должно быть электропитание, каким образом имплантировать в тело все необходимое и как получить разрешение Управления по контролю за качеством пищевых продуктов и лекарств США (FDA), то главное перечислено ниже.
• Мы должны считывать активность нейронов на двух уровнях:
– на уровне нейронных цепей при применении GFP [139] ,
– на уровне одного нейрона – используя нейротрофические электроды или нанопровода.
• Мы должны вызывать возбуждение нейронов на двух уровнях:
– на уровне нейронных цепей – при их активации лучами сине-голубого цвета и применении ченнелродопсина (channelrhodopsin),
– на уровне одного нейрона – при использовании небольшого числа нанопроводов, направляемых в определенные участки мозга, в которых желательно приводить в возбуждение все нейроны, независимо от типа каждого из них.
• Мы должны иметь возможность подавлять активность нервных клеток на уровне нейронных цепей, используя желтый свет и применяя халорходопсин (halorhodopsin).
• Мы должны измерять уровни допамина, окситоцина и других нейротрансмиттеров, встраивая в нейроны гены, обеспечивающие цветовую реакцию при изменении уровней нейротрансмиттеров. Исследователи из Медицинского института Говарда Хьюза изучают в этой связи продуцирование глутамата и серотонина [140] . Сэм Хайрес, один их сотрудников этого института, говорил мне: «Вполне возможно «привязать» каждый нейротрансмиттер к определенному цвету, используя с этой целью GFP в различных вариантах. Кальций / общий уровень активности нейронов – зеленый, глутамат – оранжевый, гамма-масляная кислота – красный, допамин – сине-голубой, серотонин – желтый…»
• Мы должны уметь соотносить возбуждение нейронных кластеров с известными нам ментальными событиями, используя мультивариантное распознавание паттернов и знание алгоритмов активности нервных клеток.
• Мы должны уметь интерпретировать данные , используя компьютеры с искусственным интеллектом, созданные по модели Д. Хокинса и необходимые для изучения «иерархии предвидений» (hierarchies of prediction) – то есть воспоминаний и впечатлений (perception and memory), свойственных человеческому сознанию. Вероятно, эти компьютеры будут иметь память, насчитывающую множество терабайт. Эти устройства могут быть имплантированными или же просто носимыми на теле. В любом случае они будут использовать радиоволны для связи внешних и внутренних (вживленных в тело) частей.
• У нас будет возможность передавать сигналы нейронной активности по Интернету, используя беспроводные сети.
Питание для внутренних компонентов будет давать радиочастотная индукция, как это устроено в наши дни в кохлеарных имплантах. Внешние компоненты устройства могут получать энергию от батарей.
Правда, немало изменений должно претерпеть и само тело человека. Нам придется генетически изменять некоторые части головного мозга, вводя туда модифицированные вирусы, размещать под черепом панели со светодиодами, вживлять на ключевых участках нейротрофические электроды и применять нанопроводники. Компьютерная часть устройства должна быть заглублена в череп и прикрыта защитным титановым кожухом, как это делается сейчас с кохлеарными имплантами. Электропитание и данные можно подавать во внутреннюю часть, используя ток, возникающий в виде радиочастотной индукции от работающих внешних частей. Эти устройства должны быть подключены к Интернету по беспроводному радиоволновому каналу.