Яды и противоядия
Шрифт:
Интересно отметить, — что предварительная ингаляция кислорода способствует созданию резистентности организма к окиси углерода. Это очень убедительно демонстрирует следующий опыт. Если одну мышь поместить в литровую колбу, заполненную кислородом, а вторую — в такую же колбу с атмосферным воздухом и в обе колбы ввести по 25 мл окиси углерода, то через несколько десятков секунд можно наблюдать молниеносно протекающую интоксикацию с судорогами и быструю гибель второй мыши, в то время как первая мышь не проявляет никаких признаков отравления в течение длительного времени. Хотя этот опыт впервые был продемонстрирован более полувека назад, до настоящего времени нет достаточно удовлетворительного объяснения его результатов. При дыхании в атмосфере чистого кислорода количество его, растворенное в плазме крови, значительно возрастает, и это, по-видимому, тормозит реакцию образования карбоксигемоглобина: кислород, подобно буферу, каким-то образом защищает гемоглобин от СО. Как бы то ни было, даже кратковременное вдыхание кислорода может способствовать предупреждению интоксикации угарным газом, например когда предстоит выполнение работы в отравленной атмосфере.
Гипербарическая оксигенация при отравлениях окисью углерода
Но наиболее действенным и перспективным при отравлениях окисью углерода надо признать применение кислорода под избыточным давлением. Этот метод лечения с использованием
Артериальная кровь здорового человека при нормальном барометрическом давлении насыщена кислородом на 96–98%; при этом количество содержащегося в ней кислорода достигает 19,4 объемных процентов (об.%). Иными словами, каждые 100 мл крови транспортируют 19,4 мл кислорода, из которых 19,1 мл приходится на кислород, химически связанный с гемоглобином, и только 0,3 мл — на кислород, растворенный в плазме. Следовательно, в естественных условиях жизнедеятельности поддержание кислородного баланса обеспечивается в организме главным образом гемоглобином, а значение растворенного в плазме кислорода в обменных процессах ничтожно.
Оказалось, что можно резко увеличить транспортную функцию плазмы крови, если повысить во вдыхаемом воздухе парциальное давление кислорода. Это видно из простого расчета по формуле:
где К — количество растворенного в плазме кислорода в об. %; а — содержание в об.% растворенного в плазме кислорода при нормальном (760 мм рт. ст.) барометрическом давлении; рО2 — парциальное давление кислорода в альвеолярном воздухе в мм рт. ст. Так, при дыхании в атмосфере чистого кислорода количество его, растворенное в плазме крови, будет
145
Boerema J., Blummelkamp W., Meijne N. Anaesthesia in a high pressure chamber. Clinical application of hyperbaric oxygen. Amsterdam, 1964.
Еще в 1895 г. Холден показал, что мыши остаются живыми, несмотря на содержание во вдыхаемой смеси смертельной концентрации окиси углерода, если их подвергать воздействию кислорода под давлением 2 атм. В дальнейшем опытами на других животных, в том числе на обезьянах, многими исследователями была подтверждена эффективность ГБО при интоксикациях окисью углерода. В этой связи следует упомянуть поставленные на добровольцах эксперименты, о которых в 1949 г. сообщили американские исследователи Питтс и Пейс. Вначале люди находились в среде с угарным газом до тех пор, пока количество HbСО не достигало 20–30%, после чего их помещали в барокамеру с кислородом под давлением 2,5 атм. В результате была отмечена быстрая диссоциация карбоксигемоглобина. [146]
146
Цит. по: Саватеев П. В., Топкопий В. Д., Фролов С. Ф. Оксигенобаротерапия при некоторых острых отравлениях. — BMЖ, 1970, № 2, с. 23–28.
Вероятно, не случайно первое успешное применение ГБО при отравлении людей окисью углерода связано с практикой глубоководных погружений, при которых, как известно, используются барокамеры высокого давления. И осуществлено это было в нашей стране. В 1958 г. водолазный врач К. М. Рапопорт сообщил [147] о полном выздоровлении 24 лиц, отравленных окисью углерода (в том числе четверых в крайне тяжелом состоянии). Это достигалось воздействием кислорода под повышенным давлением в обычных водолазных рекомпрессионных камерах. Давление в них повышалось до 2–4 атм, а время пребывания под максимальным давлением колебалось в зависимости от состояния отравленных от 15 до 45 мин. Автором были получены разительные результаты при лечении лиц, находившихся в безнадежном положении. Эти четверо отравленных пришли в сознание на 19–35-й минуте пребывания под давлением кислорода в 3 атм. В дальнейшем давление в барокамере постепенно (в течение 105 мин) снижалось до атмосферного, и пораженные были выведены из нее в удовлетворительном состоянии. После кратковременного стационарного обследования они выписались из клиники вполне здоровыми. Наблюдение за ними в течение года показало отсутствие каких-либо последствий интоксикации.
147
Рапопорт К. М. О лечении отравлений окисью углерода кислородом под повышенным давлением. — ВМЖ, 1958, № 8, с. 46–49.
Теперь уже число случаев успешного применения ГБО при отравлениях СО исчисляется десятками. Например, сообщается, что с помощью кислорода под давлением можно добиться полного излечения тяжело отравленного, если даже он находился в бессознательном состоянии до 3,5 ч. [148] Большинство авторов приходят к выводу, что ГБО целесообразно применять и тогда, когда содержание карбоксигемоглобина в крови сравнительно невелико. При этом подчеркивается, что увеличение количества физически растворенного кислорода в плазме крови не единственная причина эффективности ГБО. Следует иметь также в виду, что кислород под избыточным давлением ускоряет диссоциацию НbСО.
148
Зайцев Г. И., Зуихин Д. П., Сапов И. А. Оксигенобаротерапия при отравлении окисью углерода. — ВМЖ, 1973, № 8, с. 76–77.
Другие средства специфического лечения отравлений окисью углерода
В настоящее время имеются лечебные препараты, к которым, может быть, формально в большей степени, чем к кислороду, подходит название «антидот» при их использовании в случае интоксикации СО. В числе таких средств назовем вещества, вступающие в прямое химическое взаимодействие с окисью углерода. Прежде всего это препараты двухвалентного железа и кобальта. Например, введение отравленному восстановленного железа резко ускоряет удаление СО из организма (в виде соединений FeCO). Тем самым при увеличении в организме внегемоглобинового железа создается своеобразный отвлекающий фактор, с помощью которого эритроциты предохраняются от действия СО. На этом основании А. М. Рашевская и Л. А. Зорина [149] — отечественные специалисты, много работающие в области токсикологии ядов, избирательно действующих на кровь, — считают, что при вынужденном длительном контакте с малыми концентрациями СО надо применять препараты двухвалентного железа с профилактической целью. В частности, они рекомендуют для этого принимать до 5 мл ферковена — смеси сахарата железа и глюконата кобальта в растворе углеводов (в 1 мл препарата содержится 20 мг железа и 0,09 мг кобальта). По имеющимся данным, Со2ЭДТА также оказывает положительное действие при отравлении СО, химически связывая яд.
149
Рашевская А. М., Зорина Л. А. Профессиональные заболевания системы крови химической этиологии. М.: Медицина, 1968.
Следовательно, практическая токсикология располагает радом эффективных противоядий при интоксикации одним из самых распространенных ядов — окисью углерода. Однако поиски новых средств борьбы с отравлениями угарным газом продолжаются.
Яды-метгемоглобинообразователи
Существует много веществ, которые выключают гемоглобин из процесса переноса кислорода посредством окисления входящего в состав его молекулы атома железа. Превращение Fe2+ в Fe3+ лишает гемоглобин способности обратимо связываться с кислородом. Такое изменение химической структуры гемоглобина лежит в основе перехода его в новую форму — метгемоглобин (MtHb). Доказано, что в нормальных условиях жизнедеятельности кровь человека и животных содержит от 1 до 2% MtHb. В отличие от НbО2, в котором к атомам Fe2+ лабильно присоединен кислород, MtHb, (точнее, атомы Fe3+ его молекулы), как полагают большинство исследователей, прочно связывает отрицательно заряженные гидроксильные группы. Естественно, что яды-метгемоглобинообразователи тормозят кислородную функцию гемоглобина и, подобно окиси углерода, вызывают гемическую (кровяную) гипоксию.
В настоящее время известно большое число химических соединений, вызывающих токсические метгемоглобинемии.
Так, профессор М. С. Кушаковский [150] рассматривает следующие 5 групп веществ-метгемоглобинообразователей:
1) нитросоединения, в том числе органические (окислы азота, нитриты и нитраты, тринитротолуол);
2) аминосоединения (анилин, гидроксиламин, фенилгидразин, аминофенолы и их многочисленные производные, среди которых компоненты красителей, ваксы для обуви);
150
Кушаковский М. С. Клинические формы повреждения гемоглобина. Л.: Медицина, 1968.
3) окислители (хлораты, перманганаты, хиноны, нафталин);
4) окислительно-восстановительные краски (метиленовый синий, крезиловый голубой);
5) лекарственные препараты (нитроглицерин, амилнитрит, новокаин, сульфаниламиды, аспирин, барбитураты и др.).
Этот перечень показывает, сколь велика в производственных и бытовых условиях вероятность блокирования кислородпередающей функции крови вследствие образования метгемоглобина. Например, исследования Ф. Н. Субботина [151] показали, что соли азотной кислоты, содержащиеся в питьевой воде, могут вызвать у людей синдром метгемоглобинемии. Серьезную опасность они представляют для детей, как наиболее ранимых. Выяснилось, что такого рода заболевание связано чаще всего с потреблением колодезной воды, богатой нитратами. Источником последних являются аммиачно-селитровые удобрения, попадающие в грунтовые воды и воды открытых водоемов. Поступая в организм, нитраты под влиянием микрофлоры кишечника переходят в нитриты (соли азотистой кислоты), которые всасываются в кровь и превращают большее или меньшее количество гемоглобина в метгемоглобин. [152] Кроме того, известно, что нитраты и нитриты довольно широко используются при обработке мяса в консервном и колбасном производстве. Это также может наносить вред здоровью, прежде всего лицам с сердечнососудистой патологией, заболеваниями органов дыхания и страдающим малокровием, т. е. живущим и без того на пределе кислородного обеспечения. Вот почему вопрос о необходимости исключения солей азотной и азотистой кислот из состава пищевых продуктов приобретает все большую актуальность. [153] Ряд летучих веществ пищевого происхождения, образующихся, например, при кулинарной обработке лука, чеснока, хрена и редьки, также является метгемоглобинообразователями. Так, обследование работников столовых выявило у 33% из них повышение уровня метгемоглобина до 6,5%. [154]
151
Субботин Ф. Н. Нитраты воды и пищи как новая гигиеническая проблема в свете экспериментального изучения и обобщения литературы о метгемоглобинемии у детей и взрослых, а также у сельскохозяйственных животных. Автореф. докт. дис. Л., 1962.
152
Следует также иметь в виду, что нитрат натрия в организме может образовывать токсичные органические соединения, например диметилнитрозамин.
153
Об этом говорит также большое значение, которое придает данной проблеме Всемирная организация здравоохранения (см., например, кн.: Нитраты, нитриты и N-нитрозосоединения. Женева, ВОЗ, 1981).
154
Печенкина С. М., Околов Ф. С. О содержании метгемоглобина в крови лиц, контактирующих с летучими метгемоглобинообразователями. — Гиг. труда, 1969, № 11, с. 48–49.