Загадки и диковинки в мире чисел
Шрифт:
Деление на счетах
Выполнять деление с помощью конторских счетов гораздо труднее, чем умножать; для этого нужно запомнить целый ряд особых приемов, подчас довольно сложных. Интересующимся ими придется обратиться к специальным руководствам. Здесь же укажу лишь, для примера, удобные приемы деления с помощью счетов на числа первого десятка (кроме числа 7, способ деления на которое чересчур сложен).
Как делить на 2, мы уже знаем – способ этот очень прост.
Гораздо сложнее прием деления на 3: он состоит в замене деления умножением на бесконечную периодическую дробь 3,3333… (известно, что 0,333… = 1/3). Умножать с помощью счетов на 3 мы умеем; уменьшать в 10 раз – тоже несложно: надо лишь переносить делимое одной проволокой ниже. После не долгого упражнения этот прием деления на 3, на первый взгляд такой сложный, оказывается на практике довольно удобным.
Деление на 4, конечно, заменяется двукратным делением на 2.
Еще
На 6 делят с помощью счетов в два приема: сначала делят на 2, потом полученное делят на 3.
Деление на 7, как мы уже сказали, выполняется помощью счетов чересчур сложно, и потому мы излагать его не будем.
На 8 делят в три приема: сначала делят на 2, потом полученное вновь на 2, и затем еще раз на 2.
Очень интересен прием деления на 9. Он основан на том, что 1/9 = 0,1111… Отсюда ясно, что, вместо деления на 9, можно последовательно складывать 0,1 делимого + 0,1 его + 0,001 его и т. д. [10] .
Всего проще, как видно, делить на 2,10 и 5 – и, конечно, на такие кратные им числа, как 4, 8, 16, 20, 25, 40, 50, 75, 80,100. Эти случаи деления не представляют трудности и для малоопытного счетчика.
Отголоски старины
С отдаленными предками наших русских счетов связаны некоторые пережитки старины в языке и обычаях. Мало кто подозревает, например, что, завязывая «для памяти» узелок на носовом платке, мы повторяем то, что некогда с большим смыслом делали наши предки, «записывая» таким образом итог счета на шнурках. Веревка с узлами представляла собой счетный прибор, в принципе аналогичный нашим счетам и, без сомнения, связанный с ними общностью происхождения: это – «веревочный абак».
С абаком же связаны и такие распространенные теперь слова, как «банк» и «чек». «Банк» по-немецки означает скамья. Что же общего между финансовым учреждением, «банком» в современном смысле слова, и скамьей? Оказывается, что здесь далеко не простое совпадение. Абак в форме скамьи был широко распространен в деловых кругах Германии в XV–XVI веках; каждая меняльная лавка или банкирская контора характеризовалась присутствием «счетной скамьи» – и естественно, что скамья стала синонимом банка.
Более косвенное отношение к абаку имеет слово «чек». Оно английского происхождения и производится от глагола «чекер» (chequer, или checker) – графить; «чекеред» (графленый) называли разграфленную в форме абака кожаную салфетку, которую в XVI–XVII веках английские коммерсанты носили с собою в свернутом виде и, в случае надобности произвести подсчет, развертывали на столе. Бланки для расчетов графились по образцу этих свертывающихся абаков, и неудивительно, что на них перенесено было, в сокращенном виде, и название этих счетных приборов: от слова «чекеред» произошло слово «чек».
Любопытно, откуда произошло выражение «остаться на бобах», которое мы применяем теперь к человеку, проигравшему все свои деньги. Оно очень древнего происхождения и относится к тому времени, когда все денежные расчеты – в том числе и расчеты между игроками – производились на абаке, на счетном столе или скамье, с помощью бобов, игравших роль косточек наших счетов [11] . Человек проигравший свои деньги, оставался с одними бобами, выражавшими сумму его проигрыша – отсюда и соответствующий оборот речи, надолго переживший породившие его обстоятельства.
Глава IV Немного истории
«Трудное дело – деление»
Привычным движением зажигая спичку, мы иной раз еще задумываемся о том, каких трудов стоило добывание огня нашим предкам, не очень даже отдаленным. Но мало кто подозревает, что и употребительные ныне способы выполнения четырех арифметических действий тоже не всегда были так просты и удобны, так прямо и быстро приводили к искомому результату. Предки наши пользовались приемами, гораздо более громоздкими и медленными. И если бы школьник XX века мог перенестись за четыре, даже всего за три века назад, он поразил бы наших предков быстротой и безошибочностью своих арифметических выкладок. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи. Со всех концов Европы приезжали бы учиться у нового великого мастера счетного дела… Особенно сложны и трудны были для наших предков действия умножения и деления – последнее всего больше. Тогда не существовало еще, как теперь, одного выработанного практикой приема для каждого действия. Напротив, одновременно были в ходу целые дюжины различных способов умножения и деления – приемы один другого запутаннее, твердо запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) старался изобрести собственный способ выполнения этого действия. И все эти приемы умножения – «шахматами или органчиком», «загибанием», «по частям или в разрыв», «крестиком», «решеткой», «задом наперед», «ромбом», «треугольником», «кубком или чашей», «алмазом» и прочие [12] , а также все способы деления, носившие не менее затейливые наименования, соперничали друг с другом в громоздкости и сложности. Усваивались они с большим трудом и лишь после продолжительной практики. Признавалось даже, что для овладения искусством быстрого и безошибочного умножения и деления многозначных чисел нужно особое природное дарование, исключительные способности; рядовым людям премудрость эта недоступна. «Трудное дело – деление» – гласила старинная латинская пословица, и вполне обоснованно, если принять во внимание кропотливые, утомительные методы, какими выполнялось некогда это действие. Нужды нет, что способы эти носили подчас довольно игривые названия: под веселым названием скрывался обычно длиннейший и утомительнейший ряд запутанных манипуляций. В XVI веке кратчайшим и удобнейшим способом деления считался прием деления «лодкой или галерой». Знаменитый итальянский математик того времени Николай Тарталья в своем обширном учебнике арифметики писал о нем следующее:
«Второй способ деления называется в Венеции [13] лодкой или галерой, вследствие некоторого сходства фигуры, получающейся при этом, потому что при делении некоторых родов чисел составляется фигура, похожая на лодку, а в других на галеру, которая в самом деле красиво выглядит; галера получается иной раз хорошо отделанная и снабженная всеми принадлежностями – выкладывается из чисел так, что она действительно представляется в виде галеры с кормою и носом, мачтою, парусами и веслами»…
Читается это очень весело: так и настраиваешься скользить по числовому морю на парусах арифметической галеры. Но хотя старинный итальянский математик и рекомендует этот способ как – «самый изящный, самый легкий, самый верный, самый употребительный и самый общий из существующих, пригодный для деления всех возможных чисел», – все же я не решаюсь его изложить здесь, опасаясь, что даже терпеливый читатель закроет книгу в этом скучном месте и не станет читать дальше. Между тем этот утомительный способ действительно был самым лучшим в ту эпоху, а у нас в России употреблялся до середины XVIII века: в «Арифметике» Магницкого он описан в числе шести предлагаемых там способов (из которых ни один не похож на современный) и особенно рекомендуется автором; Магницкий на протяжении своей объемистой книги – 640 страниц огромного формата – пользуется исключительно «способом галеры», хотя и не употребляет этого наименования.
В заключение покажем читателю эту числовую «галеру», воспользовавшись примером из упомянутой книги Тартальи:
Мудрый обычай старины
Добравшись после утомительных трудов до желанного конца арифметического действия, предки наши считали необходимым непременно проверить этот в поте лица добытый итог. Громоздкие приемы вызывали естественное недоверие к их результатам. На длинном, извилистом пути легче заблудиться, чем на прямой дороге современных приемов. Отсюда естественно возник старинный обычай проверять каждое выполняемое арифметическое действие – похвальное правило, следовать которому не мешало бы и нам.
Любимым приемом проверки был так называемый способ 9, – очень изящный прием, который полезно и теперь знать каждому. Он нередко описывается в современных арифметических учебниках, особенно иностранных, но почему-то теперь малоупотребителен на практике, что, впрочем, не умаляет его достоинств.
Проверка девяткой основана на «законе остатков», гласящем: остаток от деления суммы на какое-либо число равен сумме остатков от деления каждого слагаемого на то же число; точно так же, остаток произведения равен произведению остатков множителей. С другой стороны, известно также [14] , что при делении числа на 9 получается тот же остаток, что и при делении на 9 суммы цифр этого числа; например, 758 при делении на 9 дает 2, и столько же получается в остатке от деления (7 + 5 + 8) на 9. Сопоставив оба свойства чисел, мы и приходим к приему проверки девяткой, т. е. делением на 9.
Пусть требуется проверить правильность сложения следующего столбца:
Составляем в уме сумму цифр каждого слагаемого, причем в получающихся числах также складываем цифры (это делается в самом процессе сложения цифр), пока, в конечном результате, не получим однозначного числа. Результаты эти (остатки от деления на 9) записываем, как показано на примере, рядом с соответствующим слагаемым. Складываем все остатки – получаем 8. Такова же должна быть сумма цифр итога (5339177), если действие выполнено верно: 5 + 3 + 3 + 9+1 + 7 + 7 после всех упрощений, равно 8 (точнее: «равноостаточно с 8»).