Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
Теория струн — наиболее многообещающий кандидат на теорию, объединяющую квантовую механику и тяготение, — дает конкретный повод для размышлений о дополнительных измерениях. Действительно, единственные известные нам согласованные версии теории струн обременены этими удивительными придатками. Однако, хотя появление теории струн в мире физики укрепило респектабельность дополнительных измерений, сама идея этих измерений возникла значительно раньше.
В начале двадцатого века теория относительности Эйнштейна распахнула двери для идеи о возможном существовании дополнительных измерений пространства. Теория относительности описывает тяготение, но эта теория не говорит нам, почему мы ощущаем то конкретное тяготение, которое мы знаем. Теория Эйнштейна не отдает предпочтения никакому конкретному числу пространственных измерений. Она одинаково
В 1919 году, следуя по пятам за эйнштейновской общей теорией относительности (завершенной в 1915 году), польский математик Теодор Калуца заметил эту черту теории Эйнштейна и смело предположил существование четвертого пространственного измерения, нового невидимого измерения у пространства [18] . Он полагал, что дополнительное измерение должно как-то отличаться от трех знакомых бесконечных измерений, хотя не уточнил как. Целью Калуцы при введении лишнего измерения было объединение сил тяготения и электромагнетизма. Хотя детали этой неудавшейся попытки объединения сейчас несущественны, дополнительное измерение, которое он столь дерзко ввел, оказалось очень к месту.
18
В этой и последующей главах мы будем говорить о пространственных измерениях. После введения понятий теории относительности мы переключимся на пространство-время и будем рассматривать время как дополнительное измерение.
Калуца написал свою статью в 1919 году. Эйнштейн, который был рецензентом журнала и оценивал возможность публикации статей в научном журнале, колебался в отношении достоинств этой идеи. Он задержал публикацию статьи Калуцы на два года, но в конце концов признал ее оригинальность. Но Эйнштейн все же хотел знать, чем было это измерение. Где оно было и чем отличалось от других? Насколько далеко оно простиралось?
Эти вопросы были очевидными. Те же самые вопросы могут тревожить и вас. На вопросы Эйнштейна не было никакого отклика вплоть до 1926 года, когда шведский математик Оскар Клейн задумался над ними. Клейн предположил, что дополнительное измерение может быть свернуто в форме окружности и быть чрезвычайно малым, равным 10– 33 см [19] , т. е. одной миллиардной от триллион триллионной доли сантиметра. Такое крохотное свернутое измерение должно существовать везде, иначе говоря, в каждой точке пространства должна существовать своя крохотная окружность размером 10– 33 см.
19
Я буду иногда использовать научное обозначение для очень больших или очень маленьких чисел. Когда степень десяти отрицательна, как, например, 10– 33, соответствующее число означает десятичную дробь, например, 10– 33 равно 0,000000000000000000000000000000001. Это число необычайно мало, и его было бы крайне утомительно записывать полностью каждый раз, когда оно возникает. Число с положительной степенью десяти, например, 1033 имеет 33 нуля после единицы, т. е. равно чудовищно большому числу 1 000 000 000 000 000 000 000 000 000 000 000, и его опять же трудно полностью писать каждый раз. Я часто буду при первом упоминании приводить число как в научной терминологии, так и словами.
Эта маленькая величина представляет собой планковскую длину, величину, которая будет для нас существенной позднее, когда мы детальнее обсудим гравитацию. Клейн выбрал планковскую длину потому, что это единственная длина, которая может естественно возникнуть в квантовой теории гравитации, а гравитация связана с формой пространства. Пока что все, что нам нужно знать о планковской длине, — это то, что она чрезвычайно, невообразимо мала, много меньше, чем все, что мы когда-либо будем иметь шанс измерить. Она на двадцать четыре порядка величины [20] меньше размера атома и на девятнадцать порядков величины меньше протона. Нетрудно проглядеть что-то столь же маленькое, как это.
20
000 000 000 000 000 000 000 000, или триллион триллионов.
В повседневной жизни есть много примеров вещей, протяженность которых в одном из трех обычных измерений слишком мала, чтобы быть замеченной. Картина на стене или бельевая веревка с большого расстояния кажутся протяженными не в трех, а в меньшем числе измерений. Мы не видим толщину слоев краски или толщину веревки. Для обычного наблюдателя картина выглядит так, как будто у нее только два измерения, а веревка для белья кажется имеющей только одно, даже если мы знаем, что на самом деле эти вещи имеют три измерения. Единственный способ разглядеть трехмерную структуру таких вещей — посмотреть на них поближе или с достаточно хорошим разрешением. Если мы протянем шланг через футбольное поле и посмотрим на него с вертолета, как показано на рис. 15, шланг будет казаться одномерным. Но с близкого расстояния вы можете различить два измерения поверхности шланга и трехмерный объем, который эта поверхность ограничивает.
Однако для Клейна неразличимо мала была не толщина какой-то вещи, а малым было само измерение. Так что же означают слова, что измерение мало? Как будет выглядеть вселенная со свернутым измерением с точки зрения того, кто живет в ней? Опять же ответ на этот вопрос зависит полностью от размера свернутого измерения. Рассмотрим пример, показывающий, как будет выглядеть мир для разумных существ, которые слишком малы или, наоборот, слишком велики по сравнению с размером свернутого дополнительного измерения. Поскольку нарисовать четыре или больше измерений невозможно, то на первом рисунке я представлю вселенную с малым компактифицированным измерением, имеющую только два измерения, причем одно из них туго скручено до очень малого размера (рис. 16).
Представьте снова садовый шланг, который можно рассматривать как длинный резиновый лист, свернутый в трубку малого поперечного сечения. На этот раз мы полагаем, что шланг — это вся вселенная (а не объект внутри вселенной) [21] . Если бы вселенная имела форму такого садового шланга, у нас было бы одно очень длинное измерение и одно очень маленькое, свернутое измерение. Это именно то, что мы хотим.
Для небольшого существа, например, плоского жука, живущего во вселенной садового шланга, она выглядела бы двумерной. (В таком сценарии наш жук должен быть приклеен к поверхности шланга — двумерная вселенная не включает внутренность шланга, которая трехмерна.) Жук может ползать в двух направлениях: вдоль шланга или вокруг него. Как Додо, который мог бегать по кругу в своей двумерной вселенной, жук, начавший движение из какой-то точки на шланге, может проползти вокруг него и в конце концов вернуться к тому месту, с которого начал. Так как второе измерение мало, жуку не придется слишком далеко уползать, чтобы вернуться.
21
Садовый шланг всегда был популярной аналогией для иллюстрации понятия свернутых измерений. Я узнала об этой аналогии в математическом лагере, а совсем недавно она была использована в книге Брайана Грина «Элегантная Вселенная» (рус. пер.: Грин Б. Элегантная Вселенная: Суперструны, скрытые размерности и поиски окончательной теории. М.: Книжный дом «Либроком»/URSS, 2011. — Прим. пер.). Я буду использовать ту же аналогию, так как, во-первых, она очень хороша, а во-вторых, я хочу расширить ее в следующих разделах (и последующих главах), включив в рассмотрение разбрызгиватели для объяснения гравитации с дополнительными измерениями.
Если популяция живущих на шланге жуков испытывает воздействие сил, например, электрических или гравитационных, эти силы способны притягивать или отталкивать жуков в любом направлении по поверхности шланга. Жуки могут быть отделены друг от друга либо вдоль длины шланга, либо по его окружности, и могут испытывать действие любой силы, присутствующей на шланге. Если разрешение достаточно для того, чтобы различать столь малые расстояния, как диаметр шланга, силы и тела проявляют оба измерения, которые и есть на самом деле.
Однако, если бы наш жук мог обозреть окружающее его пространство, он бы заметил, что два измерения очень различны. Одно измерение, вдоль длины шланга, очень большое. Он может быть даже бесконечно большим. В то же время другое измерение очень мало. Два жука никогда не расползутся очень далеко друг от друга в направлении вокруг шланга. И жук, пытающийся совершить далекое путешествие в этом направлении, очень скоро попадет туда, откуда он начал свой путь. Сообразительный жук, любящий тренировать свои ноги, знал бы, что его вселенная двумерна, и что одно измерение тянется далеко-далеко, а другое очень мало и свернуто в окружность.