Чтение онлайн

на главную

Жанры

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Рэндалл Лиза

Шрифт:

Какую бы форму не принимали свернутые дополнительные измерения, и сколько бы их не было, в каждой точке вдоль бесконечных измерений будет находиться маленькое компактное пространство, содержащее в себе все свернутые измерения. Поэтому, если теоретики, занимающиеся струнами, правы, то везде в видимом пространстве — на кончике вашего носа, на северном полюсе Венеры, в точке на теннисном корте, куда вы послали ракеткой мяч во время последней подачи, — должно находиться шестимерное многообразие Калаби — Яу невидимого крохотного размера. В каждой точке пространства должна присутствовать многомерная геометрия.

Теоретики, занимающиеся струнами, часто предполагают, как это уже сделал Клейн, что свернутые измерения имеют размеры, равные планковской

длине 10– 33 см. Компактные измерения планковских размеров были бы необычайно хорошо спрятаны. Почти наверняка у нас нет способов обнаружить нечто столь малое. Поэтому весьма вероятно, что дополнительные измерения планковских размеров не оставляют никаких видимых следов своего существования. Следовательно, даже если мы живем во вселенной с дополнительными измерениями планковских размеров, мы будем регистрировать только три обычных измерения. Вселенная может иметь много таких крохотных измерений, но может статься, что мы никогда не достигнем достаточной разрешающей способности, чтобы их обнаружить.

Ньютоновский закон для силы тяготения при наличии дополнительных измерений

Хорошо иметь наглядное, описательное объяснение того, почему дополнительные измерения прячутся после компактификации или сворачивания до очень маленьких размеров. Но не мешало бы проверить, что законы физики согласуются с этими интуитивными представлениями.

Посмотрим на ньютоновский закон для силы тяготения, который в законченном виде был предложен Ньютоном в XVII веке. Этот закон говорит нам, каким образом сила тяготения зависит от расстояния между двумя массивными телами [22] . Закон Ньютона известен как закон обратных квадратов, означающий, что сила тяготения уменьшается с расстоянием обратно пропорционально квадрату расстояния. Например, если вы удвоите расстояние между двумя телами, сила их гравитационного притяжения уменьшится в четыре раза. Если расстояние между телами увеличивается в три раза по сравнению с первоначальным, гравитационное притяжение уменьшается в девять раз. Закон обратных квадратов для тяготения является старейшим и самым важным из законов физики. Среди прочего, этот закон объясняет движение планет по тем орбитам, которые мы видим. Любая жизнеспособная физическая теория тяготения должна воспроизводить закон обратных квадратов, или она будет обречена на провал.

22

В этой книге «массивное» тело подразумевает тело с массой. Массивное тело следует отличать от «безмассового» тела, имеющего нулевую массу (и движущегося со скоростью света).

Тот вид зависимости силы тяготения от расстояния, который заложен в ньютоновском законе обратных квадратов, тесно связан с числом пространственных измерений. Причина этого в том, что число измерений определяет, насколько быстро рассеивается гравитация при распространении в пространстве.

Подумаем над этой связью, что очень пригодится нам позднее, когда мы будем рассматривать дополнительные измерения. Для этого представив себе водопровод, вода из которого может быть направлена через шланг или через разбрызгиватель. Предположим, что через шланг и через разбрызгиватель протекает одинаковое количество воды и этой водой нужно полить определенный цветок в саду (рис. 20). Когда вода идет по шлангу, направленному на цветок, этот цветок получит всю воду. Расстояние от начала шланга до насадки, направленной на цветок, несущественно, так как вся вода должна в конце концов дойти до цветка независимо от того, насколько далеко находится шланг.

Теперь представим, что то же количество воды пропускается через разбрызгиватель, который одновременно поливает много цветков. Иначе говоря, разбрызгиватель подает воду по окружности, так что она попадает на все цветки, находящиеся на определенном расстоянии. Так как теперь вода распределяется среди всего, что есть на данном расстоянии, выбранный цветок будет получать не всю воду. Более того, чем дальше цветок от источника, тем больше растений будет поливать разбрызгиватель, и вода будет распределена по большей территории (рис. 21). Это произойдет потому, что вы можете полить больше растений на окружности длиной в три метра, чем на окружности длиной в один метр. Поскольку вода разбрызгивается шире, более далекий цветок получает меньше воды.

Аналогично, все, что равномерно распределяется более чем в одном направлении, будет оказывать меньшее влияние на любую конкретную вещь, находящуюся на большем расстоянии, будь это цветок или, как мы вскоре увидим, тело, на которое действует сила тяготения. Гравитация, как вода, чем дальше, тем шире распределяется.

Этот пример позволяет также увидеть, почему распределение так сильно зависит от числа измерений, в которых распространяется вода (или тяготение).

Вода из двумерного разбрызгивателя рассеивается с увеличением расстояния, в отличие от воды из одномерного шланга, которая вообще не рассеивается. Представьте теперь разбрызгиватель, распределяющий воду по поверхности сферы, а не только по окружности. (Такой разбрызгиватель напоминал бы нечто вроде созревшего одуванчика.) В этом случае вода будет рассеиваться с расстоянием значительно быстрее.

Применим эти рассуждения к тяготению и выведем точную зависимость от расстояния силы тяготения в трех измерениях. Закон тяготения Ньютона вытекает из двух следующих фактов: тяготение действует одинаково по всем направлениям, а пространство трехмерно. Представим планету, притягивающую любую находящуюся поблизости массу. Так как сила тяготения одинакова по всем направлениям, интенсивность гравитационного притяжения, оказываемого планетой на другое массивное тело, например луну, будет зависеть не от направления, а от расстояния между телами.

Чтобы графически изобразить интенсивность гравитационной силы, слева на рис. 22 показаны радиальные линии, выходящие наружу из центра планеты и напоминающие струи воды, летящие из разбрызгивателя. Плотность этих линий определяет интенсивность гравитационного притяжения, оказываемого планетой на все, что ее окружает. Если тело пронизывает большее количество силовых линий, это будет означать большее гравитационное притяжение, меньшее количество силовых линий будет означать меньшее гравитационное притяжение.

Заметим, что сферическую оболочку, нарисованную на любом расстоянии независимо от того, далеко она или близко от центра, пересекает одно и то же число силовых линий (центральный и правый рисунки на рис. 22). Число силовых линий никогда не меняется. Но так как силовые линии распределены по всем точкам поверхности сферы, сила на большем расстоянии неизбежно меньше. Точный коэффициент ослабления определяется количественной мерой того, насколько широко расставлены силовые линии на любом заданном расстоянии.

На любом расстоянии от массы через сферическую поверхность проходит фиксированное число силовых линий. Площадь этой сферической поверхности пропорциональна квадрату ее радиуса, т. е. равна некоторому числу, умноженному на квадрат радиуса. Так как по поверхности сферы распределено фиксированное число гравитационных силовых линий, сила тяготения должна уменьшаться обратно пропорционально квадрату радиуса. Это распределение гравитационного поля и есть причина закона обратных квадратов для тяготения.

Поделиться:
Популярные книги

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Ветер и искры. Тетралогия

Пехов Алексей Юрьевич
Ветер и искры
Фантастика:
фэнтези
9.45
рейтинг книги
Ветер и искры. Тетралогия

Авиатор: назад в СССР 10

Дорин Михаил
10. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 10

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Сердце Дракона. Том 20. Часть 1

Клеванский Кирилл Сергеевич
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
5.00
рейтинг книги
Сердце Дракона. Том 20. Часть 1

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Новик

Ланцов Михаил Алексеевич
2. Помещик
Фантастика:
альтернативная история
6.67
рейтинг книги
Новик

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3