Чтение онлайн

на главную

Жанры

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Рэндалл Лиза

Шрифт:

В идеале физики мечтают найти теорию, способную объяснить все наблюдения, но использующую при этом самое малое возможное число правил и минимально возможное число фундаментальных ингредиентов. Конечной целью для ряда физиков является простая, элегантная, объединяющая теория, такая теория, которую можно использовать для предсказания результатов любого эксперимента в физике частиц.

Охота за такой объединяющей теорией — это честолюбивая, кто-то может сказать, дерзкая задача. В некотором отношении она отображает давно начавшиеся поиски простоты. В Древней Греции Платон рассматривал идеальные формы, подобные геометрическим фигурам и идеальным существам, которым только приближенно соответствуют земные тела. Аристотель также верил в идеальные формы, но он полагал, что только эксперименты могут обнаружить те идеалы, которых

напоминают физические тела. Религии также часто постулируют более совершенное или более единое состояние, которое удалено от реальности, но как-то с ней связано. История изгнания из сада Эдема предполагает идеализированный предшествующий мир. Хотя вопросы и методы физики в наше время и у наших предков весьма отличаются друг от друга, физики тоже ищут более простую вселенную, и пытаются найти ее не в философии или религии, а в образующих наш мир фундаментальных составных частях.

Однако на пути поиска элегантной теории, которую мы можем связать с нашим миром, есть одно очевидное препятствие: когда мы глядим вокруг себя, мы видим очень мало той простоты, которую должна воплощать такая теория. Проблема состоит в том, что мир сложен. Требуется много усилий для того, чтобы связать простую, экономную формулировку с более сложным реальным миром. Помимо того, что единая теория должна быть простой и элегантной, она должна как-то вмещать достаточную структуру, чтобы соответствовать наблюдениям. Мы предпочитаем верить, что существует точка зрения, откуда все выглядит элегантно и предсказуемо. Однако Вселенная не является такой же чистой, простой и упорядоченной, как теории, с помощью которых мы надеемся ее описать.

Частичники преодолевают область, связывающую теорию с наблюдениями, с помощью двух различных методологий. Ряд теоретиков следует подходу «сверху вниз»: они стартуют с теории, которую считают правильной, например, теоретики-струнники начинают с теории струн и пытаются извлечь из нее следствия, так чтобы связать эту теорию со значительно более беспорядочным миром, который мы наблюдаем. С другой стороны, создатели моделей следуют подходу «снизу вверх»: они пытаются вывести лежащую в основе теорию, устанавливая связи между наблюдаемыми элементарными частицами и их взаимодействиями. Они ищут ключи к загадкам физических явлений и строят модели, приводящие к теориям, которые могут оказаться как верными, так и неверными. Оба подхода имеют свои достоинства и недостатки, и наилучший путь к успеху не всегда очевиден.

Конфликт между двумя научными подходами интересен тем, что он отражает два совершенно различных подхода к научным исследованиям. Это разделение представляет собой воплощение научных споров, идущих из глубины веков. Следуете ли вы платоновскому подходу, заключающемуся в стремлении понять нечто, исходя из более фундаментальной истины, или аристотелевскому подходу, основанному на эмпирических наблюдениях? Выбираете ли вы путь сверху вниз или путь снизу вверх?

Этот выбор можно также выразить словами «старый Эйнштейн против молодого Эйнштейна». В молодости Эйнштейн основывал свою работу на экспериментах и физической реальности. Даже его так называемые мысленные эксперименты базировались на физических ситуациях. Подход Эйнштейна изменился после того, как во время создания общей теории относительности он осознал ценность математики. Он обнаружил, что критическое значение для завершения его теории имели математические достижения, что побудило его в последующей деятельности к использованию более теоретических методов. Несмотря на успешное применение математики к общей теории относительности, дальнейшие математические поиски единой теории не привели Эйнштейна к успеху.

Как показывает работа Эйнштейна, есть различные типы научной истины и разные способы их поисков. Один способ основан на наблюдениях; именно так мы изучаем, например, квазары и пульсары. Другой основан на абстрактных принципах и логике; например, Карл Шварцшильд впервые вывел существование черных дыр как математическое следствие общей теории относительности. В конечном итоге мы хотели бы, чтобы оба способа сблизились, — сейчас существование черных дыр выводится как из математической обработки наблюдений, так и из чистой теории, однако на первых стадиях исследования наши успехи, основанные на двух типах истины, редко совпадают. В случае же теории струн принципы и уравнения по своей глубине и близко не стоят рядом с теми, на которых основана общая теория относительности, так что вывод следствий из этих принципов становится намного сложнее.

Когда теория струн впервые приобрела известность, она резко разделила мир физики частиц. Я была студенткой старшего курса в середине 1980-х годов, когда «струнная революция» впервые расколола мир физики частиц пополам. В это время одна часть физического сообщества с открытым сердцем решила посвятить себя неосязаемому математическому миру теории струн.

Основное исходное положение теории струн состоит в том, что струны, а не частицы являются самыми фундаментальными объектами в природе. Частицы, которые наблюдаются в окружающем нас мире, являются просто следствиями существования струн: они возникают из различных колебательных мод вибрирующей струны, что весьма напоминает то, как в результате колебаний скрипичной струны возникают различные музыкальные звуки. Теория струн завоевала признание, так как физики искали теорию, которая согласованным образом включает квантовую механику и общую теорию относительности и может делать предсказания вплоть до самых мельчайших доступных масштабов расстояний. Для многих теория струн выглядит как наиболее многообещающий кандидат на такую теорию.

Однако другая группа физиков решила сохранить контакт с миром относительно низких энергий, который можно исследовать экспериментально. Я была в Гарварде, и тамошние частичники, в том числе выдающиеся создатели моделей Говард Джорджи и Шелдон Глэшоу, а также многие талантливые аспиранты и студенты, остались стойкими приверженцами подхода, основанного на построении моделей, и продолжали исследования в этом направлении.

Вскоре развернулась ожесточенная борьба относительно достоинств двух противоположных точек зрения — теории струн и построения моделей, причем каждая сторона заявляла о более прочной позиции на пути к истине. Создатели моделей считали, что струнники находятся в математическом мире грез, в то время как струнники считали, что создатели моделей теряют свое время и игнорируют истину.

Так как в Гарварде было много блистательных создателей моделей и я получала удовольствие от этих идей, то, попав впервые в мир физики частиц, я примкнула к этому лагерю. Теория струн — волшебная теория, которая уже привела к глубоким математическим и физическим прорывам, и вполне может оказаться, что она содержит правильные составные части окончательного описания природы. Но поиск связи между теорией струн и реальным миром представляет устрашающую задачу. Проблема в том, что теория струн определена при значениях энергии, которые примерно в десять миллионов миллиардов раз больше, чем значения, которые мы способны экспериментально получать с помощью современных установок. Мы до сих пор даже не знаем, что случится, когда энергия ускорителей частиц увеличится всего в десять раз!

Колоссальная теоретическая пропасть отделяет теорию струн, в том виде, как мы ее сейчас понимаем, от предсказаний, описывающих наш мир. Уравнения теории струн описывают настолько ничтожно малые и обладающие такой невероятно большой энергией объекты, что любые сделанные на основе мыслимых технологий детекторы, которые мы только можем вообразить, не смогут даже увидеть эти объекты. Не только математически чудовищно трудно вывести следствия и предсказания теории струн, но даже не всегда ясно, как организовать составные части этой теории и определить, какую математическую задачу следует решать. Слишком легко потеряться в чаще деталей.

Теория струн может привести к избытку возможных предсказаний на расстояниях, которые мы действительно видим, — предсказываемые частицы зависят от до сих пор не определенной конфигурации фундаментальных составных частей теории. Без определенных гипотетических предположений теория струн выглядит так, будто в ней содержится больше частиц, больше взаимодействий и больше измерений, чем наблюдается в нашем мире. Нам нужно понять, что отсекает дополнительные частицы, взаимодействия и измерения от наблюдаемых. Мы до сих пор не знаем, существуют ли физические свойства, отделяющие одну конфигурацию от другой, и даже не представляем, как найти то единственное проявление теории струн, которое согласуется с нашим миром. Нам должно очень повезти, чтобы мы могли извлечь все правильные физические принципы, которые приведут к согласованию предсказаний теории струн с тем, что мы видим.

Поделиться:
Популярные книги

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Восход. Солнцев. Книга V

Скабер Артемий
5. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга V

Сумеречный стрелок 6

Карелин Сергей Витальевич
6. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 6