Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
В экспериментах на работающих и строящихся коллайдерах уже не ищут ингредиенты Стандартной модели, они уже все найдены. Стандартная модель изящно организует эти частицы по их взаимодействиям, так что сейчас известен полный набор частиц этой модели. Вместо этого экспериментаторы ищут частицы, которые могут оказаться еще интереснее. Современные теоретические модели включают составные части Стандартной модели, но добавляют новые элементы для решения ряда вопросов, оставшихся в Стандартной модели нерешенными. Мы надеемся, что текущие и будущие эксперименты дадут нам ключи, которые позволят разобраться с этими вопросами и открыть истинную, основополагающую природу вещества.
Хотя
Мы знаем, что та структура вещества, которую мы только что обсудили, есть результат важнейших физических открытий прошлого века. Эти грандиозные успехи существенны для любой более всеобъемлющей теории мира, которую мы хотели бы построить, и сами по себе ознаменовали крупные достижения.
Начиная со следующей главы, мы сделаем обзор этих открытий. Теории вырастают из наблюдений и недостатков предшествующих теорий, так что вы сможете лучше понять роль современных достижений, если познакомитесь с выдающимися успехами более ранних эпох. На рис. 34 показаны связи между теориями, которые мы будем обсуждать. Мы увидим, как новые теории вырастали на уроках старых теорий, и как новые теории заполнили пробелы, обнаруженные только после того, как были завершены старые теории.
Мы начнем с двух революционных идей первых лет двадцатого века — теории относительности и квантовой механики, с помощью которых была установлена форма Вселенной и содержащихся в ней тел, а также состав и структура атома. Затем мы рассмотрим Стандартную модель физики частиц, развитую в 1960-1970-е годы для предсказания взаимодействий элементарных частиц, с которыми мы только что познакомились. Наконец, мы познакомимся с наиболее важными принципами и понятиями физики частиц: симметрией, нарушением симметрии и зависимостью физических величин от масштаба, с помощью которых мы узнаем многое о том, как самые элементарные компоненты вещества образуют наблюдаемую нами структуру.
Однако, несмотря на большие успехи, Стандартная модель физики частиц оставляет без ответа многие фундаментальные вопросы, которые настолько важны, что их решение позволит проникнуть в структуру строительных элементов нашего мира. В гл. 10 будет рассмотрен один из самых интересных и загадочных механизмов Стандартной модели: происхождение масс элементарных частиц. Мы увидим, что для объяснения массы известных частиц и слабости гравитации почти наверняка потребуется более глубокая физическая теория, чем Стандартная модель.
Подобные проблемы физики частиц исследуются в моделях с дополнительными измерениями, но при этом также используются идеи теории струн. Обсудив основы физики частиц, мы перейдем к фундаментальные понятиям и принципам теории струн. Мы не хотим выводить модели непосредственно из теории струн, но эта теория содержит ряд элементов, которые используются при разработке моделей с дополнительными измерениями.
Этот обзор охватывает много теоретических положений, так как анализ дополнительных измерений связывает между собой многие теоретические достижения на двух главных берегах физики частиц — создании моделей и теории струн. Знакомство с многими наиболее интересными современными достижениями в этих областях поможет вам лучше понять мотивацию и методы, лежащие в основе развития моделей с дополнительными измерениями.
Однако, если вы хотите быстрее продвинуться вперед, я заканчиваю каждую из обзорных глав маркированным списком важнейших понятий, на которые мы будем ссылаться далее, когда вернемся к созданию моделей с дополнительными измерениями. Маркеры будут служить коротким путем, резюме, если вы захотите пропустить главу или захотите сфокусировать внимание на материале, к которому мы обратимся далее. Иногда я буду ссылаться и на вопросы, не отмеченные маркером, но эти маркеры будут давать обзор ключевых идей, существенных для главных результатов в оставшейся части книги.
В гл. 17 мы приступаем к исследованию миров с дополнительными измерениями — теориям, в которых предполагается, что материя, из которой состоит наша Вселенная, сосредоточена на бране. Идеи мира на бране позволяют глубже проникнуть в общую теорию относительности, физику частиц и теорию струн. В разных мирах на бране, которые я опишу, делаются разные предположения и объясняются разные явления. Я суммирую конкретные свойства каждой модели и отмечаю их маркером в конце этих глав. Мы до сих пор не знаем, какая из этих идей правильно описывает природу. Однако вполне возможно, что мы в конце концов обнаружим, что браны являются частью космоса, а мы, наряду с другими параллельными вселенными, прикованы к ним.
Одна вещь, которую я поняла, проводя эти исследования, — Вселенная часто обладает большим воображением, чем мы. Иногда свойства Вселенной оказываются настолько неожиданными, что мы только по случайности натыкаемся на них. Открытие таких сюрпризов может быть ошеломляющим. Оказывается, что известные нам физические законы имеют потрясающие следствия.
Приступим теперь к изучению того, что собой представляют эти законы.
II Достижения начала двадцатого века
Глава 5
Относительность: эволюция теории тяготения Эйнштейна
The laws of gravity are very, very strick.
And you’re just bending them for your own benefit.
Billy Bragg [31]
Икар Рашмор III с нетерпением ждал, когда он сможет показать Дитеру свой новый порше. Но как бы он ни гордился новой машиной, еще больше его волновала GPS (Глобальная система позиционирования), которую он недавно самостоятельно разработал и установил.
31
Законы тяготения очень, очень строги,
А вы просто приспосабливаете их для собственной выгоды.
Билли Брегг