Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
Так как уравнения Эйнштейна применимы к любому распределению энергии, они привели к изменению взглядов космологов — историков космоса. Теперь, если бы ученые знали содержащиеся во Вселенной вещество и энергию, они могли бы рассчитать ее эволюцию. В пустой Вселенной пространство будет совершенно пустым, без всякой ряби и неровностей, т. е. имеющим нулевую кривизну. Но когда Вселенную заполняет вещество и энергия, они искажают пространство-время, что влечет за собой интересные возможности для структуры Вселенной и ее изменения во времени.
Почти наверняка, мы не живем в статической Вселенной; как вскоре будет ясно, мы на самом деле должны жить в скрученной пятимерной вселенной. К счастью, общая теория относительности говорит нам, как рассчитать следствия этих гипотез. Так же как существуют примеры двумерных геометрий с положительной, нулевой и отрицательной кривизной, существуют и четырехмерные геометрические конфигурации
Общая теория относительности приводит к ряду следствий, которые нельзя рассчитать с помощью ньютоновской теории тяготения. Одним из многих преимуществ общей теории относительности является возможность устранить раздражающее понятие о действии на расстоянии ньютоновской теории, утверждающее, что гравитационное влияние тела будет ощущаться везде, как только это тело возникнет или начнет двигаться. Как мы знаем, согласно общей теории относительности, прежде чем гравитация может подействовать, пространство-время должно деформироваться. Этот процесс не происходит мгновенно. Он занимает время. Гравитационные волны распространяются со скоростью света. Гравитационные явления могут проявиться в данном месте только через промежуток времени, который нужен сигналу, чтобы дойти до этого места и исказить пространство-время. Этот интервал времени никогда не может быть меньше того интервала времени, который затрачивает свет, распространяющийся быстрее всего, что мы знаем, чтобы попасть в это место. Например, вы никогда не примете сигнал радио или мобильного телефона быстрее, чем через промежуток времени, который затрачивает световой пучок, чтобы долететь до вас.
Кроме того, физики сумели применить уравнения Эйнштейна для описания других типов гравитационного поля. С помощью общей теории относительности ученые смогли описать и изучить черные дыры. Эти поразительные таинственные объекты образуются тогда, когда вещество сильно сконцентрировано в очень малом объеме. Геометрия пространства-времени в черных дырах в высшей степени искажена, так что все, что попадает на черную дыру, захватывается внутрь. Даже свет не может вырваться наружу. Почти сразу после создания общей теории относительности Карл Шварцшильд обнаружил [47] , что черные дыры являются следствием уравнений Эйнштейна. Однако лишь в 1960-е годы физики всерьез восприняли идею, что черные дыры могут реально существовать в нашей Вселенной. В наши дни черные дыры полностью признаются астрофизическим сообществом. На самом деле есть мнение, что в центре каждой галактики, включая нашу собственную, существует сверхмассивная черная дыра. Кроме того, если существуют скрытые измерения, то существуют и многомерные черные дыры, и если они велики, то выглядят как четырехмерные черные дыры, наблюдаемые астрономами.
47
Он сделал это, находясь во время Первой мировой войны на Русском фронте в рядах немецкой армии.
Чтобы завершить историю с GPS, заметим, что для вычисления положения с точностью до 1 м необходимо измерять время с относительной точностью 10– 13. Единственный возможный способ достичь такой точности — воспользоваться атомными часами.
Но даже если наши часы окажутся идеальными, благодаря эффекту замедления времени их ход будет замедляться на 10– 10 в относительных единицах. Если такая ошибка не будет исправлена, она окажется в тысячу раз больше той, которая допустима для GPS. Кроме того, следует принять во внимание гравитационное голубое смещение — эффект общей теории относительности, связанный с тем, что фотон движется в изменяющемся гравитационном поле, и приводящий к ошибке по меньшей мере того же порядка. Эти и другие отклонения, связанные с общей теорией относительности, будут приводить к ошибкам, которые, если ими пренебречь, будут суммироваться, приводя к общей ошибке больше 10 км/день [48] . Икар (и современные GPS) должны вносить поправки, обусловленные этими релятивистскими эффектами.
48
Нейл Ашби. Относительность и GPS (Physics Today. 2002. May. P. 41).
Хотя к настоящему времени теория относительности хорошо проверена и даже предсказывает эффекты, которые необходимо учитывать в практических устройствах, мне кажется любопытным, что поначалу никто не услышал Эйнштейна. Он был совершенно неизвестным ученым, работавшим в патентном бюро Берна, так как не мог найти лучшей работы. Находясь в этом малопривлекательном месте, он предложил теорию, противоречившую взглядам всех остальных физиков того времени.
Джеральд Холтон, историк науки из Гарварда, рассказывал мне, что первым сторонником Эйнштейна стал немецкий физик Макс Планк. Если бы не Планк, немедленно отметивший блистательность работы Эйнштейна, могло бы потребоваться значительно больше времени на то, чтобы теория была замечена и принята. Вслед за Планком несколько других известных физиков оказались достаточно знающими, чтобы выслушать и обратить внимание на работу Эйнштейна. Вскоре это сделал весь мир.
Что стоит запомнить
• Скорость света постоянна. Она не зависит от скорости наблюдателя.
• Теория относительности изменяет наши представления о пространстве и времени и утверждает, что мы можем рассматривать их совместно как единую структуру пространство-время.
• Специальная теория относительности связывает значения энергии, импульса (указывающего нам, как тело откликается на действие силы) и массы. Например, E = mc2, где Е — энергия, m — масса и с — скорость света.
• Масса и энергия заставляют пространство-время искривляться, и можно понимать это искривленное пространство-время как источник гравитационного поля.
Глава 6
Квантовая механика: принципиальная неопределенность, главные неопределенности и соотношение неопределенностей
And you may ask yourself,
am I right?.. Am I wrong?
Talking Heads [49]
49
И вы можете спросить себя:
Я прав?.. Или я ошибаюсь?
«Токинг Хедс»
Икар никак не мог понять, то ли Афина заставляет его смотреть слишком много фильмов, то ли Дитер слишком много говорит о физике. Но какова бы ни была причина, прошлой ночью Икару приснилось, что он встретил квантового детектива. В длинном пальто и мягкой фетровой шляпе, с каменным выражением на лице, детектив из сна говорил:
«Я ничего не знал о ней, кроме ее имени и того, что она стояла передо мной. Но с того момента, как я посмотрел на нее, я понял, что с Электрой [50] будут проблемы. Когда я спросил ее, откуда она пришла, она отказалась отвечать, в комнате было две двери, так что она должна была войти через одну из них. Но Электра хрипло прошептала: „Мистер, забудьте это. Я никогда не скажу вам, через которую“.
50
Имя относится к электрону, а не к героине греческой мифологии.
Хотя я видел, что она вся трясется, я попытался припереть эту особу к стенке. Но Электра с бешеной скоростью задвигалась, как только я начал к ней приближаться. она молила меня не подходить ближе. Увидев ее волнение, я отступил. Хотя я не был новичком в вопросах неопределенности, в этот раз я был побежден, казалось, неопределенность собиралась еще какое-то время слоняться здесь».
Квантовая механика, несмотря на все свое противоречие интуиции, фундаментально изменила те пути, которыми ученые познают мир. На основе квантовой механики возникли многие разделы современной науки: в результате ее развития были либо созданы, либо пересмотрены статистическая механика, физика частиц, химия, космология, молекулярная биология, эволюционная биология и геология (в том, что касается радиоактивной датировки). Многие удобства современного мира, например компьютеры, DVD-проигрыватели и цифровые фотоаппараты, были бы невозможны без транзисторов и современной электроники, развитие которых основано на квантовых явлениях.