Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
Дополнительные измерения помогают понять необычное расположение молекул в квазикристалле; точно так же в наши дни физики предполагают, что теории с дополнительными измерениями смогут прояснить существующие в физике частиц и космологии связи, которые трудно понять, если ограничиться только тремя измерениями.
В течение тридцати лет ученые опирались на теорию, называемую Стандартной моделью физики частиц, которая рассказывает о фундаментальной природе материи и тех силах, за счет которых взаимодействуют элементарные составляющие [3] . Физики проверили Стандартную модель, воссоздавая частицы, которые существовали в нашем мире только в самые первые секунды жизни Вселенной, и убедились, что Стандартная модель очень хорошо описывает многие их свойства. Однако ряд фундаментальных вопросов остается в рамках Стандартной модели
3
Мы обсудим Стандартную модель подробнее в гл. 7. (Все сноски без пометы Прим. пер. принадлежат автору, за исключением сносок, содержащих перевод эпиграфов. — Прим. пер.)
В этой книге рассказывается о том, как я и другие ученые искали ответы на загадки Стандартной модели и оказались в мирах с дополнительными измерениями. Новые достижения теории дополнительных измерений в конце концов займут в этом рассказе центральное место, но сначала я представлю вспомогательных игроков — революционные достижения физики двадцатого века. Недавние идеи, о которых я позднее расскажу, основаны на этих замечательных прорывах.
Обзорные разделы, с которыми мы познакомимся, можно в общих чертах разделить на три категории: физика начала двадцатого века, физика частиц и теория струн. Мы обсудим ключевые идеи теории относительности и квантовой механики, а также современное состояние физики частиц и проблемы, которые могут быть связаны с дополнительными измерениями. Мы рассмотрим также понятия, лежащие в основе теории струн, которую многие физики считают главным претендентом на роль теории, объединяющей квантовую механику и тяготение. Теория струн, постулирующая, что самыми основными элементами в природе являются не частицы, а фундаментальные колеблющиеся струны, придала значительный импульс изучению дополнительных измерений, так как теория струн требует существования более чем трех пространственных измерений. Кроме того, я опишу роль бран — объектов в теории струн, похожих на мембраны, которые столь же существенны для теории, как сами струны. Мы рассмотрим как успехи этих теорий, так и те вопросы, которые они оставляют открытыми, оправдывая тем самым современные исследования.
Одной из главных загадок является вопрос, почему тяготение настолько слабее всех других известных взаимодействий. Когда вы взбираетесь на гору, вы ощущаете, что тяготение совсем не слабая сила, но это происходит потому, что вас притягивает вся Земля. Маленький магнит может поднять скрепку, даже несмотря на то, что вся масса Земли притягивает ее в противоположном направлении. Почему же тяготение настолько бессильно по сравнению с маленьким усилием крохотного магнита? В стандартной трехмерной физике частиц слабость тяготения представляется большой загадкой. Ответ на нее могут дать дополнительные измерения. В 1998 году мой коллега Раман Сундрум и я нашли одну причину, по которой это может быть так.
Наша гипотеза основана на геометрии закрученного пространства, понятии, возникающем в эйнштейновской общей теории относительности. Согласно этой теории, пространство и время объединены в одну пространственно-временную структуру, искаженную или искривленную материей и энергией. Раман и я применили эту теорию в новом контексте с дополнительными измерениями. Мы обнаружили конфигурацию, в которой пространство-время искажено столь значительно, что даже если гравитация сильна в одной области пространства, она может оказаться ничтожной во всех других областях.
Мы обнаружили еще более поразительную вещь. Для объяснения того, почему не видны дополнительные измерения, физики в течении восьмидесяти лет полагали, что они должны быть крохотными по величине, однако в 1999 году Раман и я обнаружили, что искривленное пространство может объяснить не только слабость гравитации, но и то, что невидимое дополнительное измерение может простираться до бесконечности, если только оно должным образом деформировано в искривленном пространстве. Дополнительное измерение может иметь бесконечный размер, и тем не менее быть скрытым. (Не все физики сразу же приняли нашу гипотезу. Но мои друзья не-физики сразу поняли, что я куда-то продвинулась, и не потому, что они разобрались в науке, а потому, что когда после своего доклада я пришла на банкет конференции, Стивен Хокинг занял мне место.)
Я объясню физические принципы, лежащие в основе этих и других теоретических достижений, и новые представления о пространстве, делающие их допустимыми. Далее мы столкнемся с еще более фантастической возможностью, которую годом позднее обнаружили физик Андреас Карч и я: возможно, мы живем в трехмерном кармане пространства, хотя вся остальная Вселенная ведет себя так, как будто у нее большее число измерений. Этот результат открывает массу новых возможностей для структуры пространства-времени, которое может состоять из отдельных областей, каждая из которых имеет разное число измерений. Мы не только не находимся в центре Вселенной, как пять столетий тому назад сказал Коперник, но, возможно, живем в изолированной области с тремя пространственными измерениями, являющейся частью многомерного космоса.
Изученные в последнее время мембраноподобные объекты, называемые бранами, являются важными компонентами богатых многомерных ландшафтов. Если дополнительные измерения являются игровой площадкой физика, то миры бран — гипотетические вселенные, в которых мы живем на одной из бран, — являются как бы фантастическими многослойными многогранными детскими гимнастическими стенками. Эта книга поведет вас в мир бран и вселенных с закрученными, искривленными, большими и бесконечными измерениями, некоторые из которых содержат единственную брану, а другие состоят из множества бран, приютивших невидимые миры. И все это находится в области возможного.
Постулированные миры бран являются теоретическим актом веры, а содержащиеся в них идеи — умозрительными. Однако, как при игре на бирже, более рискованные ставки могут привести к проигрышу, но они могут и наградить вас большим выигрышем.
Представьте вид снежного покрова под лыжным подъемником в первый солнечный день после снегопада, когда нетронутый снег манит вас наверх. Вы чувствуете — эх, что бы там ни было, но раз вы встали на лыжи, дальше вас ждет прекрасный день. Некоторые спуски будут крутыми и полными ухабов, некоторые — легкими прогулками, а некоторые — сложными извилистыми путями среди деревьев. Но даже если вы случайно сделаете неправильный поворот, большую часть дня вы будете чудесно вознаграждены.
Для меня построение моделей — под этим физики понимают поиск теорий, которые могли бы объяснять современные наблюдения, — обладает такой же неотразимой привлекательностью. Построение моделей — это путешествие с приключениями сквозь понятия и идеи. Иногда новые идеи очевидны, иногда же найти и использовать их сложно. Однако, даже если мы не знаем, куда они приведут, интересные новые модели часто вторгаются в неизведанные волшебные области.
Сейчас мы не знаем, какая из теорий правильно указывает наше место во Вселенной. Для некоторых теорий мы этого никогда и не узнаем. Но, как это ни кажется невероятным, это не так для теорий с дополнительными измерениями. Самое удивительное свойство любой теории с дополнительными измерениями, объясняющей слабость гравитации, состоит в том, что если она правильна, то мы скоро об этом узнаем. Эксперименты, изучающие взаимодействия частиц очень высоких энергий, могут обнаружить свидетельства в пользу этих предположений и лежащих в их основе дополнительных измерений в течение ближайших пяти лет, как только будет построен и запущен Большой адронный коллайдер (БАК) — ускоритель частиц очень большой энергии вблизи Женевы.
На этом коллайдере, который должен вступить в строй в 2007 году [4] , будут изучаться соударения невероятно энергичных частиц, способных затем превращаться в никогда ранее не наблюдавшиеся новые типы материи. Если какие-нибудь из теорий с дополнительными измерениями правильны, они оставят видимые следы на БАК. Свидетельства будут включать частицы, называемые модами Калуцы — Клейна, которые путешествуют в дополнительных измерениях, но оставляют следы своего существования здесь, в знакомых нам трех измерениях. Моды Калуцы — Клейна будут отпечатками пальцев дополнительных измерений в нашем трехмерном мире. А если нам очень повезет, экспериментаторы зарегистрируют и другие улики, возможно, даже многомерные черные дыры.
4
Эта книга была впервые издана на англ. языке в 2006 г. По техническим причинам ввод в действие коллайдера был перенесен на сентябрь 2008 г. Вскоре после первого пробного включения 10 сентября 2008 г., во время которого протоны были успешно пропущены по всему кольцу в обе стороны (правда, с энергией всего 450 ГэВ), коллайдер был отключен из-за аварии в одном из сверхпроводящих магнитов. В ноябре 2009 г., после окончания ремонтных работ, пучок протонов успешно прошел по всему кольцу Большого адронного коллайдера. В марте 2010 г. энергия пучка протонов была доведена до 3,5 ТэВ и состоялись столкновения протонов с суммарной энергией 7 ТэВ. Это было началом первого сеанса научной работы БАК. Он продлится 18–24 месяца и будет иметь целью сначала «переоткрытие» частиц Стандартной модели, а затем систематические поиски бозона Хиггса. После этого БАК планируется остановить для подготовки к работе на энергии 14 ТэВ и поискам физики за рамками Стандартной модели. — Прим. пер.