Чтение онлайн

на главную

Жанры

Занимательная математика
Шрифт:

Полагаю, ты согласишься, что сравнение вероятностей в уменьшенных взятках более наглядно и поучительно, чем сравнение вероятностей в полных взятках для игры в бридж?

— Не спорю, — согласился Сэм-старший. — Числа получатся другими, но отношение вероятностей для упрощенной игры покажет, каким должен быть ответ в случае полных взяток для игры в бридж.

— Прекрасно! В таком случае ответь, пожалуйста, какие возможные взятки могут оказаться у тебя в упрощенной задаче с непременным тузом пик?

— Проще простого! Вот они:

И

разумеется, вероятность получить взятку с двумя тузами из трех взяток с непременным тузом пик равна 2/3.

— Правильно, — подтвердил Сэм-младший. — А каковы возможные взятки во втором случае, когда требуется, чтобы в колоде непременно был какой-нибудь козырь?

— И в этом случае ответ очень прост:

На этот раз мы получаем пять возможных взяток, а из этих пяти только в одной взятке два туза, что дает вероятность, равную только 1/5. Но почему так?

Сэм-младший рассмеялся и объяснил:

— Вероятность благоприятного исхода по определению равна отношению числа благоприятных исходов к общему числу испытаний. И в первой, и во второй рассмотренной нами задаче в заблуждение вводит общее число возможных испытаний.

В упрощенной задаче ограничение на масть туза (то обстоятельство, что в колоде непременно должен быть туз пик) приводило только к уменьшению общего числа возможных раскладов колоды. Но это условие ничуть не изменило число благоприятных исходов, т. е. благоприятных раскладов взятки, удовлетворяющих условиям задачи. Разумеется, в задаче о «полновесной» взятке, в настоящей, а не упрощенной игре в бридж, числитель дроби, выражающей требуемую вероятность, т. е. число благоприятных исходов, будет ограничен условием непременного присутствия туза определенной масти, но общее число возможных взяток с тузом пик будет ограничено гораздо сильнее. Вероятность в этом случае оказывается больше, чем в случае, когда во взятке непременно должен быть туз какой-то масти.

Вероятность случайного события

— Ты начинаешь убеждать меня, — вздохнул Сэм. — Может быть, нам лучше перейти к бросанию монеты или чему-нибудь в том же духе?

— По правде говоря, я не собирался заходить так далеко, но ты напомнил мне одну интересную историю. Когда я учился на последнем курсе в колледже, нам пришлось прослушать один дурацкий курс, который не дал ровно ничего нашему образованию. Должно быть, этот курс был включен в программу в незапамятные времена, и о нем просто- напросто забыли. Лектор чувствовал себя очень неловко и всячески давал нам понять, что ему очень неловко попусту тратить наше время. В утешение в начале семестра он сообщил нам, что поставит всем только отличные и хорошие оценки, поэтому нам следует беспокоиться не об успеваемости, а только о напрасно потраченном времени.

Лектор был человеком, помешанным на честности, и когда ему в конце семестра пришлось выставлять оценки, не обошлось без небольшой проблемы. Дело в том, что он всем собирался

поставить только хорошие и отличные оценки, распределив их среди студентов случайным образом: каждый, прослушавший курс, мог с вероятностью 1/2 получить оценку «отлично» и с такой же вероятностью — оценку «хорошо».

Наш лектор намеревался пройтись по списку студентов и, останавливаясь на каждой фамилии, бросать монетку: орел означал бы «отлично», а решка — оценку «хорошо». Но прежде чем он приступил к бросанию монеты, его пронзила ужасная мысль: что если монета слегка несимметрична? Ведь тогда вероятности выпадения орла и решки окажутся смещенными, и оценки будут распределяться нечестно!

Проблема, с которой столкнулся наш лектор, состояла в следующем: если монета несимметрична, то можно ли случайным образом распределить оценки среди студентов, прослушавших курс, так, чтобы каждый из них с одинаковой вероятностью мог получить и отличную, и хорошую оценку?

Сэм-старший издал короткий смешок и заметил:

— Я всегда знал, что оценки ставятся наобум, но не думал, что кому-нибудь понадобится исключать эффект возможной асимметрии монеты. Все же, как мне кажется, я знаю, что нужно сделать. Что если лектор станет бросать монету дважды? Разве не верно, что независимо от смещения вероятность выпадения сначала орла, а потом решки в точности равна вероятности выпадения сначала решки, а потом орла?

Сэм-младший тоже рассмеялся:

— Что верно, то верно! А если оба бросания завершатся одинаковыми исходами, то их нужно просто исключить и бросать монетку снова два раза подряд. В зачет идут только те бросания, при которых сначала выпадает орел, а потом решка, или сначала решка, а потом орел. Тогда лектор выставляет оценку «отлично», если первым выпадает орел, и «хорошо», если первой выпадает решка.

— Причина, по которой такая тактика дает правильный результат, очень любопытна, — продолжал Сэм-младший, — и я хотел бы пояснить, в чем тут дело.

Путь

р
— вероятность выпадения орла при первом или втором бросании. Тогда вероятность выпадения решки равна
1 — р
. Следовательно, вероятность выпадения в первом бросании орла, а во втором решки равна произведению
р
и
1 — р
, т. е.
р(1 — р)
.

Точно так же вероятность выпадения при первом бросании решки, а при втором орла равна

(р — 1)р
.

Но так как умножение обыкновенных чисел коммутативно, т. е. произведение не зависит от порядка сомножителей, оба произведения равны:

р(1 — р) = (1 — р)р

Поэтому твой ответ правилен.

Бросание монет

Сэм-старший улыбнулся и сказал:

— Я знал, что когда дело дойдет до денег, я смогу показать тебе, что разбираюсь в своем деле.

— Никогда в этом не сомневался, — заверил отца Сэм-младший. — Я только хотел обратить твое внимание на некоторые тонкости в простейших понятиях теории вероятностей. В том деле, которым ты занимаешься, приходится думать не только о вероятностях, но и о многом другом, например основательно разбираться в теории игр: ведь то, что ты делаешь, по существу сводится к разработке стратегий.

Поделиться:
Популярные книги

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4

Возвращение Безумного Бога 4

Тесленок Кирилл Геннадьевич
4. Возвращение Безумного Бога
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 4

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон