Зеркальный мир
Шрифт:
Фраза об искусстве, которому ты должен себя целиком посвятить, - и слова, и музыка, на которую они положены, - принадлежит Йозефу Гайдну. Для нас этот его канон интересен с точки зрения симметрии. Это место из Гайдна, как и другие примеры, касающиеся симметрии в музыке, мне сообщил Йохен Глезер.
В теории музыки (основах композиции) известны различные симметрические формы. Простейший случай - обращение интервала. Оно исходит из звуковой последовательности (то есть мелодии), которая испытывает зеркальное отражение в плоскости, параллельной средней линии нотного стана, так что направления музыкальных интервалов изменяются на обратные. Если мелодия (звуковой ряд) оригинала повышается, то в обращении она понижается на такой же интервал, и наоборот. Искусство композиции состоит
Музыкальные отражения. a - пример музыкального обращения интервалов, зеркальная плоскость параллельна нотной линейке; б - так строится ракоходное отражение: в - так строится ракоходное отражение с обращением; г - канон Гайдна, в котором встречаются все формы отражений в музыке. Кроме того, его можно петь в прямом и обратном направлении
Вольфганг Амадей Моцарт сочинил свою знаменитую фортепианную сонату ля-мажор с вариациями на одну музыкальную тему. Это не давало покоя композитору Максу Регеру, который придумал еще 8 вариаций на ту же тему, и среди них одну в обращенной форме.
Другой вариант зеркального отражения в музыке более понятен для немузыканта. В этом случае зеркальная плоскость ориентирована перпендикулярно к нотным линейкам. Отраженные ноты кажутся такими, какими они действительно выглядели бы в зеркале. Начиная от зеркальной плоскости оригинал проигрывается в обратном направлении. Такое зеркальное нотное письмо носит название «ракоходное», по ассоциации с обыкновением раков пятиться назад.
Опытные музыканты способны еще к тому же обратить и ракоходную часть пьесы. При этом в зеркальной части снова меняется направленность звукового ряда по высоте. Понижающаяся мелодия ракоходной части становится повышающейся, и наоборот. Человек, не столь искушенный в музыке, едва ли еще сможет распознать, как связан с оригиналом дважды по-разному отраженный мотив.
И наконец, бывает еще и зеркальный вариант ракоходного отражения, когда нотный лист тоже как бы ставится на голову, - и в таком виде эту музыку поют или играют. (А какая экономия бумаги!)
Так вот, Йозеф Гайдн в своем каноне применяет различные способы отражения основной мелодии: ракоходное отражение, ракоходное отражение с обращением интервала и зеркальное ракоходное отражение. Самое удивительное, что в результате мы слышим не кошачий концерт, а (как всегда у Гайдна) благозвучную мелодию.
Как-то в телевизионной передаче я наблюдал за двумя участниками, бегло говорившими в обратном направлении. Собственно, это распространенный среди школьников тайный язык (На Руси таким языком-перевертышем пользовались офени - торговцы вразнос - и бурсаки.
– Прим. перев), когда «оволс аз оволс» перевертывается задом наперед. Но в данном случае привлекало внимание то, что мелодия исполнялась «в правильном направлении», а весь текст о «малышке Гансике» - в зеркальном. О такой возможности не подумал даже Гайдн. Если бы в его распоряжении находились шесть таких телезвезд, то он мог бы поручить им повторно пропеть каждую из шести его мелодий с зеркальным произнесением текста. Тем самым он задал бы работу 12 певцам, из них 11 воспроизводили бы либо текст, либо мелодию в зеркальном отражении.
ОПЕРАЦИИ СИММЕТРИИ (СИММЕТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ) В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ
1. Вращение вокруг оси. Возможны повороты только на 60, 90, 120 и 180°.
2. Отражение в зеркальной плоскости.
Операции симметрии
3. Совместное вращение и отражение.
4. Скользящее отражение. При этом узел решетки испытывает одновременно отражение и некоторое смещение.
Операции симметрии
5. Винтовые оси обусловливают поворот на 60, 90, 120 или 180° и одновременно смещение (трансляцию) узла решётки вдоль оси вращения. Возможны левые и правые винтовые оси.
ЧЕМ МЕДЛЕННЕЕ, ТЕМ БОЛЬШЕ
Наша шкала (абсолютных) температур носит имя английского физика лорда Кельвина (1824-1907). Прежде чем стать бароном, он был просто Уильямом Томсоном. Томсон, лорд Кельвин, выполнил основополагающие исследования в области термодинамики и учения об электричестве. Однако нас интересуют рассуждения Томсона о возникновении кристаллов. Ведь кристаллы не просто существуют от века в неизменном виде. Они должны зарождаться и расти. Томсон продумал вопрос о том, где и как образуются кристаллы, и установил, что они развиваются путем осаждения из растворов. Сахар в виде крупных кристаллов - так называемый кандийский сахар - кристаллизуется из водных растворов, графит - из жидкого железного расплава. Кристаллы льда - при замерзании воды.
Бывают и твердые жидкости (вспомните о стекле). Из твердых растворов тоже могут возникать кристаллы. Однако они образуются не только из растворов, но и из газов или паров при непосредственном переходе вещества из газообразного состояния в твердое. В таких случаях говорят о сублимации, или возгонке. Из прозрачного зимнего воздуха выпадает кристаллический иней, оседающий на кустах и деревьях. Стекла автомобилей за ночь покрываются льдом, хотя никаких признаков появления жидкости перед тем не наблюдалось.
В какой-то момент, рассуждал Томсон, несколько атомов или молекул должны как-то соединиться воедино, чтобы образовать по крайней мере одну элементарную ячейку будущего кристалла. И тут последовала типично научная постановка вопроса: какова вероятность образования подобной ячейки, кристаллического зародыша, крохотного кристаллика?
Когда речь идет о величинах атомного или молекулярного порядка, в большинстве случаев не имеет смысла говорить о каком-то определенном событии. Осмысленным является лишь вопрос о вероятности этого события. Затмение Луны наступает с точностью до секунды и может быть предсказано за 1000 лет вперед. Но вот столкнутся ли между собой гдве молекулы газа - об этом можно судить только в вероятностной форме.
Верхняя грань (001) растет быстрее всех других граней. Вследствие этого она становится все меньше и в конце концов исчезнет совсем
Весьма типичен и способ, с помощью которого Томсон решил поставленную проблему. Он обратил внимание на то, что и вода, и снег способны улетучиваться. Значит, они обладают определенным давлением паров. Если это давление достаточно велико по сравнению с внешним давлением в окружающей среде, то вода или снег испаряются. По мере того как масса воды уменьшается и наконец становится столь малой, что образуется капля, все большую роль начинает играть ее поверхность. Томсону удалось показать, что при весьма малых диаметрах капелек давление пара возрастает необычайно резко. Отсюда всякая маленькая капля или кристалл становятся крайне неустойчивыми, и вероятность их «выживания» (сохранения) очень низка. В сущности, образование кристалла при таких условиях становится вообще невозможным. К счастью, однако, природа располагает средством обходить закон Томсона. Оказывается, при образовании капелек на всех неровностях, углах и прочих выступах отлагаются мелкие кристаллические зародыши, которые увеличивают диаметр капельки. Благодаря этому давление пара в капельке понижается и устойчивость ее возрастает. Не случайно слабый иней прежде всего оседает на тонких ветках и проводах, а лужи всегда замерзают с краев (у неровных выступов).