Живой учебник геометрии
Шрифт:
Из следующих примеров видно, как надо пользоваться этой таблицей для разных расчетов.
36. Сколько весит железный брусок длиною 0,6 м, шириною 2,5 см и толщиною 1,5 см?
Р е ш е н и е. Объем бруска в куб. см равен 60 ? 2,5 ? 1,5 = 225. В таблице находим, что 1 куб. см железа весит 7,8 г; следовательно, брусок весит 7,8 ? 225 = 1800 г = 1,8 кг.
37. Какой объем занимает полкилограмма свинца?
Р е ш е н и е. Каждые 11,4 грамма свинца занимают
Итак, объем 0,5 кг свинца – 44 куб. см.
38. Найти вес 1 м железа, раз меры поперечного сечения которого указаны в мм на черт. 106.
Р е ш е н и е – по образцу предыдущих задач.
Повторительные вопросы
Какие вам известны единицы веса? – Что такое грамм? Килограмм? Тонна? – Какой объем занимает грамм воды? Килограмм воды? – Что такое удельный вес? – Что означают числа в таблице удельных весов?
VI. КРУГЛЫЕ ФИГУРЫ [7]
§ 34. Длина окружности
Предварительное упражнение
Обтяните ниткой какой-нибудь круглый предмет (стакан, кастрюлю, решето) по окружности и, вытянув нитку, измерьте ее. Определите затем, во сколько раз длина окружности этого предмета больше ее диаметра.
7
Сведения из арифметики, которые должны быть предварительно усвоены: кратное отношение, выражение отношения двух чисел в процентах, относительная погрешность и ее выражение в %, прямая пропорциональность, обратная пропорциональность.
На практике часто нужно бывает определять длину окружности. Чтобы заготовить, например, железную полосу для шины колеса, кузнецу нужно заранее знать длину этой полосы, т. е. длину окружности колеса. Всего проще в этом случае обтянуть обод колеса ниткой и затем, вытянув, измерить ее длину. Не всегда, однако, бывает удобно поступать так, а часто способ этот и вовсе неприменим: нельзя, например, найти по этому способу длину окружности, начерченной на бумаге.
Другой способ определения длины окружности состоит в том, что измеряют только диаметр и по нему узнают длину окружности, пользуясь следующим свойством окружности:
д л и н а в с я к о й о к р у ж н о с т и б о л ь ш е е е д и а м е т р а п р и м е р н о в 3,14 р а з а.
Если, например, длина диаметра 75 см, то длина окружности 75 ? 3,14 ? 240 см. Правило это справедливо для всякой окружности, как бы малы или как бы велики ни были ее размеры.
Проверяя правильность этого соотношения, непосредственным измерением (диаметра – масштабной линейкой, окружности – ниткой или лентой), мы получаем числа лишь более или менее близкие к 3,14. Несовпадение результатов объясняется ошибками измерения: очень трудно измерить совершенно точно диаметр и окружность, а потому нельзя поручиться за строгую точность их отношения, полученного таким способом. Но в математике существуют иные пути к нахождению этого отношения, которых мы изложить здесь не можем, но которые дают отношение длины окружности к диаметру с точностью, более чем достаточною для практических целей.
Число, показывающее, во сколько раз окружность длиннее диаметра (т. е. выражающее
о т н о ш е н и е д л и н ы в с я к о й о к р у ж н о с т и к е е д и а м е т р у р а в н о, т. е. 3,14 и л и 31/7.
8
Чтобы легче запомнить цифры числа 3,14, можно держать в памяти слова: «это я знаю»: число букв каждого слова соответствует цифрам числа 3,14:
….это…..я….знаю
…..3…….1……4
Если запомнить более длинную фразу; «это я знаю о кругах», то будем иметь еще более точное выражение для, а именно 3,1416.
Отсюда следует, что если диаметр окружности d, то длина ее С = ? ? d, или ?d
(произносится: «пи дэ»).
Если радиус окружности R, то длина ее
С = 2R?= 2?R(«два пи эр»).
Пользуясь этими формулами, вычисляют длину окружности по ее диаметру или радиусу.
Наоборот, зная длину окружности, можно по тем же формулам вычислить ее диаметр или радиус:
Пусть, например, мы желаем определить поперечник дерева (т. е. диаметр его сечения). Измерив лентой окружность дерева, получаем, скажем, 86 см: это – длина окружности. Ее диаметр, т. е. поперечник, равен 86: 3,14 = 27 см.
Повторительные вопросы
Как определить длину окружности измерением? На чем основано нахождение длины окружности вычислением? – Чему равно отношение длины окружности к ее диаметру? Что условились обозначать буквою? – Чему равно? – Как определить длину окружности по диаметру? По радиусу? – Как определить диаметр по длине окружности? Радиус по длине окружности? Как выразить эти соотношения формулами?
Применения
39. Метр составляет 40 000 000-ю долю окружности земного шара. Найти радиус Земли.
Р е ш е н и е. Радиус найдем делением окружности на 2, т. е. на 6,28.
40 000 000: 6,28 = 6 370 000 метров.
40. Ведущее колесо паровоза делает в секунду 4 оборота. Диаметр колеса 1,3 м. Определить часовую скорость паровоза.
Р е ш е н и е. За один оборот колеса паровоз подвигается на 3,14 ? 1,3 м. Поэтому секундная скорость = 4 ? 3,14 ? 1,3, а часовая
4 ? 3,14 ? 1,3 ? 3 600 = 59 000 м = 59 км.
41. Пассажирский паровоз проходит в час 60 км. Диаметр ведущего колеса 2,1 м. Сколько целых оборотов делает колесо в секунду?
Р е ш е н и е. За один оборот колеса паровоз перемещается на 3,14 ? 2,1 = 6,6 м. Так как в секунду он подвигается на
60 000/3600 = 17 метров, то искомое число оборотов равно 17: 6,6, т. е. около 21/2.