Чтение онлайн

на главную

Жанры

Жизнь науки

Капица С. П.

Шрифт:

В 1827 г. Лобачевский избирается ректором университета; этот пост оп занимал до 1846 г., когда, вопреки желанию Совета университета, был уволен в отставку по возрасту. Каванский университет в года ректорства Лобачевского сильно расширился и укрепился как научный центр. Лобачевский был прекрасным администратором, сильным в проведении решений и независимым в своих суждениях. В то же время, по свидетельству современников, он обладал чувством доброго юмора. Умер Лобачевский под Нижним Новгородом в имении матери. За год до смерти Лобачевский опубликовал «Пангеометршо), подытоживающую результаты по созданию нм новой геометрии; последние ее главы он уже диктовал, так как под конец жизни ослеп.

Величие открытия Лобачевского было оценено далеко не сразу: в России даже такой математик, как

Остроградский не принял его работ, и из всех современников лишь Гаусе понимал значение и глубину этих идей. Гаусс представил Лобачевского к избранию в Ганноверскую Академию наук, единственную научную почесть, оказанную, по выражению английского математика Клиффорда, этому «Копернику геометрии». Лобачевский, как и Гаусс, в наблюдениях астрономии и геодезии искал пределы области применимости геометрии Эвклида к реальному миру,— проблема, которая ныне решается в релятивистской космологии, в общей теории относительности — теории пространства, времени и тяготения.

Мы приводим вступление к первой работе Лобачевского «О началах геометрии», опубликованной в 1829 г. в Вестнике Казанского университета.

О НАЧАЛАХ ГЕОМЕТРИИ [77]

Кажется, трудность понятий увеличивается по мере их приближения к начальным! истинам в природе; так не как она возрастает в другом направлении, к той границе, куда стремится ум за новыми познаниями. Вот почему трудности в Геометрии должны принадлежать, во-первых, самому предмету. Далее, средства, к которым надобно прибегнуть, чтобы достигнуть здесь последней строгости, едва ли могут отвечать цели и простоте сего учения. Те, которые хотели удовлетворить сим требованиям, заключили себя в такой тесный круг, что все усилия их не могли быть вознаграждены успехом. Наконец, скажем и то, что со времени Ньютона и Декарта, вся Математика, сделавшись Аналитикой, пошла столь быстрыми шагами вперед, что оставила далеко за собой то учение, без которого могла уже обходиться и которое с тем вместе перестало обращать на себя внимание, какое прежде заслуживало. Эвклидовы начала, таким образом, несмотря на глубокую древность их, несмотря на все блистательные успехи наши в Математике, сохранили до сих пор первобытные свои недостатки.

77

Извлечено самим Сочинителем из рассуждения под названием: Exposition suc-cinele des principes de la Geometrie etc., читанного им в Заседании Отделення Физико-Математических наук, 12 февраля 1826 г.

В самом деле, кто не согласится, что никакая Математическая наука не должна бы начинаться с таких темных понятий, с каких, повторяя Эвклида, начинаем мы Геометрию, и что нигде в Математике нельзя терпеть такого недостатка строгости, какой принуждены были допустить в теории параллельных линий. Правда, что против ложных заключений от неясности первых и общих понятий в Геометрии предостерегает нас представление самых предметов в нашем воображении, а в справедливости принятых истин без доказательства убеждаемся простотою их и опытом, например астрономическими наблюдениями; однако ж все это нисколько не может удовлетворить ум, приученный к строгому суждению. К тому и не вправе пренебрегать решением вопроса, покуда оно неизвестно и покуда не знаем, не послужит ли оно еще к чему другому.

Здесь намерен я изъяснить, каким образом думаю пополнить такие пропуски в Геометрии. Изложение всех моих исследований в надлежащей связи потребовало бы слишком много места и представления совершенно в повом виде всей науки. О прочих недостатках Геометрпи, менее важных по затруднению, не почитаю нужным говорить подробно. Ограничусь одним только замечанием, что они относятся к способу преподавания. Никто не помышляет отделить то, что исключительно принадлежит Геометрии, от того, где наука сия становится уже другою, т.е. Аналитикой.

Первые понятия, с которых начинается какая-нибудь наука, должны быть ясны и приведены к самому меньшему числу. Тогда только они могут служить прочным и достаточным основанием учения. Такие понятия приобретаются чувствами; врожденным — не должно верить.

Ничего не может быть простее того понятия, которое служит основанием Арифметике. Мы познаем легко, что всё в природе подлежит измерению, все может быть сосчитано. Не таковы положения Механики: человек с помощью одних ежедневных своих опытов не мог бы прийти к ним. Вечность и одинаковость раз сообщенного движения, где скорость служит мерою оного и массы различных тел — такого рода истины, которые требовали времени, пособия других познаний и ожидали гения...

БУЛЬ

(1815-1864)

Джордж Буль родился в Линкольне (средняя Англия) в семье мелкого лавочника. Буль получил только среднее образование и, блестяще окончив школу, стал учителем в предместьях Лондона. Он самостоятельно изучил высшую математику, европейские языки; латынь и греческий он знал еще со школы.

Одна из ранних работ Буля по анализу была послана в Лондон. В силу неизвестности автора и сложности вопроса ее чуть не отклонили от публикации в «Известиях Королевского общества». Однако через два года за эту работу это же общества присудило Булю Королевскую медаль. В 1849 г. Буль стал профессором математики в колледже в Корке (Ирландия), где он и прожил до конца своей жизни. Сорока лет Буль женился на Мэри Эверест. У Буля было 5 дочерей, из которых младшая, Этель Войнич, известна как автор замечательного романа «Овод».

Буль отличался большой независимостью и оригинальностью ума, но при жизни оп был мало известен и понят немногими. Основные его труды посвящены высшей алгебре, теории вероятностей и теории дифференциальных уравнений, исчислению конечных разностей. Но наибольшее значение имеет созданная Будем символическая математическая логика. Изобретенная Булем алгебра — булева алгебра — стала уни-нереальным языком для описания всех логических процессов, в том числе и современных логических автоматов и электронных вычислительных машин.

В 1854 г. появилось знаменитое теперь сочинение Буля «О законах мышления». Однако раньше в 1847 г. было опубликовано первоначальное изложение этого крута вопросов в книге «Математический анализ логики», предисловие к которой мы и приводим.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ЛОГИКИ Предисловие

Представляя это сочинение вниманию читателей, я считаю не лишним заметить, что соображения, подобные тем, которые в нем изложены, занимали мои мысли в различные времена. Весной этого года мое внимание к этому вопросу было привлечено сэром В. Гамильтоном и профессором де Морганом. Я был вдохновлен тем интересом, который они возбудили во мне, и возобновил почти забытую цепь ранее проведенных исследований. Мне казалось, что хотя логика и может рассматриваться по отношению к понятию количества, в ней также содержится другая и более глубокая система взаимоотношений. Если законно рассматривать логику извне, через ее связь посредством числа с понятиями пространства и времени, то также законно рассматривать ее изнутри, на основе понятий другого порядка, которые находят свое место в строении ума. В представленном трактате содержатся следствия этих воззрений и исследований, которые они подсказали.

Обычно не принято автору указывать на то, как следует судить его труд. Есть однако два условия, которые я осмелюсь поставить перед теми, кто предпримет оценку данной работы. Во-первых, никакие предвзятые представления о невозможности цели этой работы не должны мешать искренности и беспристрастности исследования того, что требует истина. Во-вторых, суждение о системе в целом не должно быть основано на рассмотрении только ее части, или на согласии с уже принятой системой, полагаемой за общепринятую, и истинность которой не подлежит пересмотру. Именно в общих теоремах, содержащихся в наиболее полном виде в последних главах этого сочинения,— которым нет по существу ничего подобного,— утверждается сущность метода анализа дедуктивного мышления.

Поделиться:
Популярные книги

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Проиграем?

Юнина Наталья
Любовные романы:
современные любовные романы
6.33
рейтинг книги
Проиграем?

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода