Жизнь науки
Шрифт:
Не нужно думать, что для получения эфемерид с большой точностью в течение длинного ряда лет достаточно вычислить бблыпее число членов в рядах, к которым приводят старые методы. Действительно, методы, состоящие в разложении координат небесных тел по степеням масс, носят общие черты, которые мешают их применению для вычисления эфемерид на долгий срок. Полученные ряды содержат члены, называемые вековыми, в которых время входит вне знака синуса или косинуса. Отсюда следует, что сходимость этих рядов может стать сомнительной для больших значений времени t.
Наличие этих вековых членов связано не с природой задачи, а только с применяемым методом. Действительно, легко видеть, что если истинное выражение координаты содержит член с sin amt, где а — константа, am —
amt-(a3m3t3)/6 + ...
и присутствие этих членов дает весьма ложное представление о настоящем виде изучаемой функции.
Все астрономы уже давно ощущают это. Сами создатели небесной механики во всех случаях, когда требовалось получить формулы, пригодные на длительный срок, как, например, для вычисления вековых неравенств, должны были действовать иначе и отказаться от разложений просто по степеням масс. Таким образом, изучение вековых неравенств при помощи системы линейных дифференциальных уравнений с постоянными коэффициентами можно считать относящимся скорее к новым, чем к старым методам.
Точно так же все усилия геометров во второй половине века имеют •своей главной целыо устранение вековых членов. Первый серьезный шаг в этом направлении был сделан Делоне, чей метод, безусловно, принесет еще много пользы.
Мы упомянем далее исследования Хилла по теории Луны (American Journal of Mathematics, v. I, Acta Mathematica, t. VIII). В этой работе, к сожалению, неоконченной, можно увидеть зачатки большей части достижений науки, сделанных с того времени.
Но ученым, который оказал этой ветви астрономии самые важные услуги, является, несомненно, Гильден. Его работы касаются всех сторон небесной механики, он умело использует все возможности современного -анализа. Гильден добился того, что из его разложений совершенно исчезли все вековые члены, которые так затрудняли его предшественников.
С другой стороны, Линдштедт предложил иной метод, значительно более простой, чем метод Гильдена, но менее общий, поскольку его невозможно применить при наличии членов, которые Гильден назвал критическими.
Благодаря усилиям этих ученых, трудности, происходящие от вековых членов, могут считаться полностью преодоленными, и новые методы, вероятно, будут еще долго удовлетворять требованиям практики.
Однако не все еще сделано. Большая часть этих разложений не сходится в том смысле, в котором геометры понимают это слово. Конечно в настоящее время это не имеет большого значения, поскольку мы уверены, что вычисление первых членов дает весьма удовлетворительное приближение. Но не менее верно и то, что эти разложения не могут давать сколь угодно точное приближение. Поэтому наступит момент, когда они станут неудовлетворительными. Краме того, некоторые теоретические выводы, которые можно было бы сделать па основании вида этих рядов, не будут законными вследствие их расходимости. Так, например, они не могут служить для разрешения вопроса об устойчивости солнечпой системы. Исследование сходимости этих разложений должно привлечь внимание геометров по причинам, которые я изложил и, кроме того, по следующей причине: цель небесной механики не будет достигнута, если мы вычислим эфемериды более пли менее приближенно, не отдавая себе отчета в степени полученной точности. Действительно, если мы обнаружим расхождение между этими эфемеридами и наблюдениями, необходимо, чтобы можно было установить, виноват ли в этом закон Ньютона или все можно объяснить несовершенством теории. Поэтому важпо определить верхний предел допущенной ошибки, на что, может быть, недостаточно обращали внимание до последнего времени.
Оказывается, методы, которые позволяют исследовать сходимость, дают нам в то же время этот верхний предел, что повышает их значение и практическую ценность.
Поэтому не следует удивляться, что я отвожу этим методам такое большое место в этой книге, хотя, быть может, я извлек из них не все, что они могут дать.
Я сам занимался этими вопросами и посвятил им мемуар, который появился в XIII томе «Acta Mathematica»; в особенности я старался осветить те немногочисленные результаты, относящиеся к задаче трех тел, которые могут быть установлены с абсолютной строгостью, требуемой математикой. Только эта строгость придает некоторую ценность моим теоремам о периодических, асимптотических и двоякоасимптотических решениях. Действительно, здесь можно будет найти твердую основу, на которую можно спокойно опереться, а это представляет ценность для всех исследований, даже для тех, где не требуется такой строгости.
С другой стороны, мне казалась, что мои результаты позволили мне объединить в некий синтез большинство новых, недавно предложенных методов, и это побудило меня предпринять настоящий труд.
В предлагаемом первом томе я должен был ограничиться изучением периодических решений первого рода, доказательством несуществования однозначных интегралов, а также изложением и обсуждением методов Линдштедта.
Следующие тома я посвящу обсуждению методов Гильдена, теории интегральных инвариантов, вопросам устойчивости, изучению периодических решений второго рода, асимптотических и двоякоасимптотических решений и, наконец, новым результатам, которые я смогу получить к моменту опубликования этих томов.
Кроме того, я буду принужден, без сомнения, вернуться в последующих томах к вопросам, рассмотренным в I томе. Правда, логика при этом немного пострадает, но нельзя поступать иначе в отрасли науки, которая находится в стадии становления и в которой новые достижения следуют непрерывно одно за другим. Поэтому я заранее прошу извинить меня.
Последнее замечание: обычно результаты представляют в форме, наиболее удобной для вычисления эфемерид, выражая координаты в виде явных функций времени. Этот путь представляет, очевидно, значительные преимущества, и большею частью я по возможности ему следовал; однако я так поступал не всегда и часто представлял результаты в форме интегралов, т.е. в виде неявных соотношений между коордипа-тами пли между координатами и временем. Прежде всего, эти соотношения можно использовать для проверки формул, дающих координаты в явном виде. Но это не все; истинная цель небесной механики состоит пе в вычислении эфемерид, так как в этом случае можно было бы удовлетвориться предвидением на короткий срок, а в том, чтобы убедиться, достаточно ли закона Ньютона для объяснения всех явлений. С этой точки зрения неявные соотношения, о которых я говорил выше, могут оказаться столь же полезными, как и явные формулы. Действительно, достаточно в них подставить наблюденные значения координат и проверить, удовлетворяются ли они.
ГИЛЬБЕРТ
Давид Гильберт родился в Восточной Пруссии. В отличие от обычпых для немецких студентов того времени, скитающихся из одного университета в другой, Гильберт получил образование и первые ученые степени в родном Кенигсберге. Основное значение для Гильберта имела сохранившаяся на всю жизнь дружба с Минковским и Адольфом Гурвпцем. В беседах с ними, часто во время долгих прогулок, больше, чем от занятий с кппгами, лекций и семинаров, сформировался Гильберт как ученый: в дальнейшем оп всегда предпочитал устное слово печатному.
В 1895 г. по инициативе Клейна Гильберт был приглашен в Геттинген, и именно с Готтингеном неразрывно связана вся дальнейшая жизнь Гильберта. В 1930 г. Гильберт по возрасту оставил кафедру, кафедру, которую некогда занимали Гаусс и Риман.
Творчество Гильберта охватывало по существу всю математику. Он обычно выделял одну область, в которой сосредоточенно и целеустремленно работал в течение нескольких лет, а затом переходил к другой; таким путем Гильберт стал мате-матпком-упиверсалом. Академик А. Н. Колмогоров намечает восемь таких периодов: теория инвариантов (1885—1893), теория алгебраических числовых полей (1893— 1898), основания геометрии (1898—1902), проблемы вариационного исчисления и дифференциальных уравнений (1900—1906)* интегральные уравнения (1900—1910), решение уравнения Варинга в теории чисел (1908—1909), математическая физика (1910—1922) и, наконец, логические основы математики (1922—1939). В работах по основаниям математики Гильберт считал возможным достичь непротиворечивого обоснования математики на основе канторовой теории множеств. Убеждение Гильберта привело к возникновению так называемого формалистического направления в математике. Однако последующие работы Геделя по логической незамкнутости арифметики сильно поколебали веру в этот подход.