Жизнь в невозможном мире: Краткий курс физики для лириков
Шрифт:
Читать Платонова трудно, даже больно, настолько он выворачивает себя наизнанку. Его предельная честность ранит.
Большим открытием для меня были Николай Бердяев, Семен Франк и другие философы русского религиозного возрождения. Сама Галина Андреевна была нерелигиозна, но мыслители эти ее интересовали. У Бердяева мне более всего запомнились «Самопознание», «Миросозерцание Достоевского», «Истоки и смысл русского коммунизма» и «Философия неравенства».
Русское возрождение, которое также принято называть «серебряным веком» русской культуры, стряхнуло с себя путы примитивного материализма и позитивизма, господствовавшие в умах русской интеллигенции второй половины XIX века. Властителями дум были Писарев и Чернышевский, а также немецкие «философы» Бюхнер и Молешотт, утверждавшие, что «мозг выделяет мысль подобно тому, как печень выделяет желчь». Русская мысль впервые, не на уровне отдельных представителей, а, так сказать, в массе, встала на мировой уровень и даже, мне кажется, в некоторых отношениях вырвалась вперед. Этот великий подъем был подготовлен Достоевским и Владимиром Соловьевым. Вот что мне наиболее дорого в культуре советского периода: Михаил Булгаков, Борис Пастернак, Анна Ахматова, Осип Мандельштам, даже Арсений Тарковский, как отчасти и его сын Андрей, — все это выросло из культуры Серебряного века.
Мой кров — убог. И времена — суровы. Но полки книг возносятся стеной. Туг по ночам беседуют со мной Историки, поэты, богословы. И здесь их голос, властный, как орган, Глухую речь и самый тихий шепот Не заглушит ни зимний ураган, Ни грохот волн, ни Понта мрачный ропот.Это — из «Дома поэта» М. Волошина. Я нередко ощущаю нечто подобное, хотя и мучает мысль: а захотели бы беседовать со мной эти титаны прошлого? Мысль о моем «варварстве» преследует меня. Тут я расхожусь с нашим веком, который провозгласил, что всяк человек хорош такой, какой он есть, и нечего зря мучиться, пытаясь стать на вершок выше ростом. Have fun! Твой единственный долг перед обществом — потратить свои деньги и тем стимулировать экономику. The rest is up to you, just do not be judgemental. Порой у меня возникает ощущение, что времена Бюхнера и Молешотта вернулись.
Примерно в то же время (это был пятый курс) мы стали ездить на «базу», где нам раз в неделю читали лекции и готовили нас к дипломной работе. Как я уже говорил, базой у нас был Институт физики высоких давлений АН СССР («Давильня»), Там я познакомился со своим будущим научным руководителем Александром Федоровичем Барабановым, который сыграл в моей жизни немалую роль.
От решения задачек, ответы на которые были уже известны, я готовился перейти
Три медитации
Слово «атом» и его судьба (подтвердила ли физика учение Демокрита?)
Есть несколько совершенно общих вопросов, на которые стремится ответить физика и которые могут заинтересовать думающего человека, не обладающего в этой области специальными познаниями. Вопросы эти старые и в классической форме восходят к древним грекам, которые оставили нам свои варианты ответов.
Вопрос 1. Есть ли что-то постоянное в окружающем нас сложном и изменчивом мире?
Вопрос 2. Можно ли свести сложное к простому?
Из множества ответов на эти вопросы наиболее известен в современном мире ответ, данный древними материалистами Демокритом и Левкиппом: «Есть только атомы и пустота».
Медитация 1. Атомы
В более пространном изложении утверждение Демокрита и Левкиппа можно переформулировать таким образом: все сложные предметы складываются из более простых так, что цепочка упрощений обрывается на неких далее неделимых объектах («атом» по-гречески означает «неделимый»). Число видов таких неделимых предметов конечно. Атомы неразрушимы, существовали всегда и будут продолжать существовать. Они и есть то постоянное и вечное, о котором говорится в первом вопросе. Можно ли свести сложное к простому? Да, можно, атомы и есть то простое, к которому все сводится.
На протяжении почти двух с половиной тысяч лет эта теория, продолжая привлекать ученых своей простотой, не получала никакого экспериментального подтверждения, но вот наконец на рубеже XIX-го и XX веков такие подтверждения, казалось бы, начали поступать. Правда, то, что ныне называют атомами, было принято за неразрушимое по ошибке — роль атомов, как их понимали древние греки ныне играют объекты, называемые «элементарными частицами», но смысл, казалось бы, остался прежним. Если уж совсем придираться, то до самых элементарных из элементарных частиц мы еще не добрались — но вот построим новый ускоритель и, может быть, доберемся… Думаю, что так интерпретируют происходящее в физике многие неспециалисты и так бы интерпретировал это, наверное, и я, если бы не занимался этими вещами вплотную.
Дерзну утверждать, что при неком сходстве терминологии (тут и там употребляется термин «атомы») картина мира, представленная древними материалистами, и картина мира, даваемая современной физикой, радикально расходятся. И дело здесь совсем не в деталях, правильного воспроизведения которых, безусловно, нельзя было ожидать от Левкиппа, Демокрита и Эпикура, а в самом духе.
Чтобы понять, в чем тут дело, обратимся к какому-нибудь популярному применению атомистической теории. Давайте сыграем в игру и опишем в атомистических терминах, например, воду. Описание выйдет такое. Для невооруженного глаза вода выглядит как нечто непрерывное и сплошное, но с помощью разных приборов можно установить, что эта видимость обманчива и при более пристальном рассмотрении непрерывность переходит в дискретность. Примерно так, как однородные с виду фотографии в газетах для внимательного глаза оказываются состоящими из множества точек. В случае воды эти точки есть молекулы Н20, которые, однако, также оказываются сложными образованиями. А именно: в каждой молекуле два атома водорода (химический символ Н) связаны с одним атомом кислорода О. Атомы тоже не просты; каждый из них состоит из отрицательно заряженного электронного «облака» и ядра. Ядро, в свою очередь, состоит из положительно заряженных протонов и незаряженных нейтронов. Протоны и нейтроны состоят из кварков и т. д. Мы верим, что этому делению есть предел, хотя мы его еще не обнаружили.
Так или почти так объясняется строение вещества в популярных книжках и школьных учебниках. Эпикур, попадись ему в руки такой учебник, наверное, подумал бы, что не зря прожил жизнь. Однако на поверку оказывается: приведенное выше описание содержит в себе настолько радикальные упрощения, что на каком-то уровне оно совершенно прекращает работать.
Чтобы понять, в чем дело, давайте зададим себе вопрос: откуда мы знаем, что из чего состоит? Вот мы говорим: вода состоит из молекул, молекулы из атомов, атомы из электронов и ядер и т. д. А откуда мы это знаем? Ну, грубо говоря, чтобы узнать, из чего состоит предмет, мы бьем молоточком и смотрим на осколки. В качестве «молоточка» можно использовать подогрев, или электрический разряд, или еще что-то, не суть важно. Нагреем воду как следует — и молекулы распадутся на атомы (кислорода и водорода). Нагреем еще сильнее (энергия ионизации атома водорода 13,6 электрон-вольт, что соответствует 154 000 °C, но по причинам, которые здесь нет нужды излагать, практически полная ионизация происходит при значительно меньших температурах) — и электроны оторвутся от ядра. А дальше? Ударим по ядру другим ядром (для этого нужен ускоритель элементарных частиц), и если оно делимо, то осколки дадут нам что-то новое, то, из чего это самое ядро состоит. Вот такая логика. Действительность, однако, следует этой логике лишь до определенного предела, после которого начинает происходить нечто странное.
Это странное проявляет себя в полной мере тогда, когда скорости сталкивающихся частиц начинают приближаться к скорости света. Тогда оказывается, что чем больше энергия сталкивающихся частиц, тем больше получается осколков и тем больше их общая масса. При этом зачастую помимо новых частиц вылетает множество частиц старого типа. Вот, например, стукнешь по протону другим протоном, и, в зависимости от энергии удара, могут появиться целые пучки («струи») протонов и антипротонов, и чем больше энергия, тем больше частиц в этих пучках. Это как если бы, открывая матрешку, мы находили бы внутри не меньших, а больших куколок. Можно ли сказать, что протон состоит из нескольких, а может быть, и бесконечного числа протонов и антипротонов? Тогда из чего состоит каждый из этих новых?
Часть ответа на этот парадокс состоит в том, что новые частицы нарождаются в процессе удара. Энергия удара Е превращается в массу т согласно знаменитой формуле Е = тс2. Великая эта формула стала частью нашей популярной культуры, навязнув у всех в зубах до такой степени, что понимать ее уже нет никакой необходимости. А между тем смысл ее волшебен. Что есть энергия? В конечном итоге это наше действие, деяние. И вот оказывается, что наше деяние, наша воля, наши деньги, наконец, могут породить массу, то есть вещество. Или по-другому: свет, чистая энергия, оказывается, тоже может порождать вещество и, наоборот, вещество может превращаться в энергию, то есть в конечном итоге в свет (радиоволны, тепловое излучение, рентгеновские лучи — это все различные формы света). Если так обстоят дела, то, конечно, нельзя говорить о вечности неделимых «кирпичиков» материи. Нельзя говорить и о материи как составленной из «кирпичиков», так как оказывается, что никакой «кирпичик», никакую частицу нельзя рассматривать отдельно от мира, ее окружающего. Она, если угодно, в одиночку не существует. И я бы сказал, что подходящей метафорой здесь является не кирпичик, а воротца. Каждая частица подобна воротцам, и вот в каком смысле.
Столкнем мысленно два протона. В зависимости от энергии удара получится разное количество частиц всяких сортов, скажем, две штуки сорта А (я не буду здесь утомлять читателя точными названиями, не в них дело), две штуки сорта Б и т. д. Однако если сталкивать не протоны, а что-нибудь еще, например нейтроны, то будут получаться другие наборы частиц. Следовательно, актом столкновения двух частиц можно в принципе породить целый зоопарк частиц (хватило бы только энергии удара!), но при этом у разных партнеров и зоопарки будут получаться разные. Поэтому частицу можно характеризовать тем зоопарком, который она может породить, то есть теми возможностями, которые она открывает. Поэтому она и есть как бы ворота из мира возможного в мир реальный; раскроешь их чуть-чуть — получится один результат, затратишь побольше энергии и раскроешь пошире — вылетит наружу больше всякого разного и т. д. Разница между разными видами частиц-ворот в том, что из разных ворот разное может вылететь.
Получается, что мир, который мы называем реальным, так сказать, «мир, данный нам в ощущениях», есть лишь рябь на поверхности мира возможного.
Сказанное выше не означает, что атомистической картиной мира совсем нельзя пользоваться. Во многих случаях она вполне годится как приближенная модель. Например, если человек занимается химией стабильных (не радиоактивных) веществ, то ему практически наверняка вся изложенная выше премудрость не понадобится. В своей практике такой химик имеет дело с процессами, где передача энергии мала по сравнению с массами участвующих в этих процессах частиц и потому соответствующие эффекты малы. Можно сказать, что природа благосклонна к нам и для того, чтобы узнать что-то, не обязательно знать все. Изучаешь, например, водород. В известных пределах его можно описать как систему двух тел, электрона и протона, притягивающихся друг к другу по закону Кулона. Математически такую задачу об описании атома водорода можно решить, что и сделал Эрвин Шредингер в 1920-х годах. В результате получилось отличное описание спектральных линий водорода. Если уж ты человек совсем дотошный, то спросишь: а как же протон с нейтроном чувствуют друг друга на расстоянии, как же это электрическое взаимодействие от одного к другому передается? Тут и начнется морока, так как передается оно посредством электромагнитного поля, а это поле тоже в каком-то смысле состоит из частиц (фотонов). Значит, это задача не двух тел, а бесконечного их количества (если включить в игру все фотоны) — и пошла писать губерния… К счастью, если копать не так глубоко, а в химии зачастую этого не надо, то можно на все эти трудности закрыть глаза.
При описании внутриядерных взаимодействий, однако, закрыть глаза не удается. Никакой процесс там невозможно адекватно описать как процесс с конечным числом участников. Любая задача там реально есть задача бесконечного количества взаимодействующих тел. Математическая, вернее, физико-математическая дисциплина, изучающая такие задачи, называется квантовой теорией поля.
«Поле» — это то, что разлито везде, в каждой точке пространства. А частица — это локализованный объект. Как же из одного можно получить другое? Связующим образом здесь является то, что японцы назвали «цунами». Цунами есть пример того, что в физике называется «солитон», то есть это одиночная волна, которая движется практически как твердое тело, не меняя своей формы. Вот так, из текучей среды (воды) возникла устойчивая форма. Причем когда солитон движется, содержимое его все время меняется, а форма остается практически постоянной. И никакой квантовой механики здесь нет. Так и физики пытаются описать частицы как «солитоны» текучих и бесконечно изменчивых полей.
Так от картины распавшегося на бесконечное количество частиц мира мы пришли к картине нерасторжимого единства. Атом («неделимый») оказался неотделимым. Неотделимым от Вселенной.
Другой идеей, испытавшей в ходе столетий приключения и трансформации, оказалась идея «эфира». В школьных учебниках написано, что идея эта, столь популярная в XIX веке, была окончательно изгнана из физики. Мне такой взгляд представляется упрощением. То, что сейчас называют «вакуумом», во многих отношениях похоже на эфир. Поскольку понятие вакуума является чрезвычайно важным в современной физике, стоит над этим поразмышлять.
Медитация 2. Пусто ли пустое пространство?
Слово «эфир» прочно вошло в наш язык («в эфире „Эхо Москвы“», «встретимся в прямом эфире» и т. д.). Но все же читатель, наверное, слышал, что эфир есть устаревшая научная концепция и его бытовое употребление является своеобразным пережитком прошлых времен. На самом деле мне кажется, что «эфир» вернулся-таки в науку, хотя и изменившись, но не до неузнаваемости.
Как следует из приведенных примеров, в повседневном употреблении слово «эфир» связано главным образом с радио. Исторически это
Волны разного рода в природе — постоянное явление, но все, с чем люди были знакомы до Максвелла, были волны, распространяющиеся в какой-то среде, как то: волны на поверхности воды, звуковые волны и т. д. Естественно, возник вопрос: колебаниями какой среды является, скажем, свет. Аналогия еще более подхлестывалась тем, что уравнения электромагнитных волн выглядели очень похоже на уравнения, описывающие распространение звука в некой среде. Гипотетическая среда эта и получила название эфира. Свойства ее получались довольно странными: она должна была быть весьма плотной и упругой (скорость света превышает скорость звука даже в таких средах, как сталь, в миллионы раз), абсолютно несжимаемой и допускать деформации только на сдвиг. Такой вот сверхтвердый кристалл. Получалось, что то, что люди полагали пустым пространством, на самом деле совсем не пусто, а занято вот этим самым странным веществом, мировым эфиром.
Нет нужды рассказывать о том, как идея такого эфира вступила в противоречие с данными наблюдений и была, казалось бы, навеки похоронена теорией относительности. Об этом написано в учебниках. Однако кое-что от этой старой идеи вернулось в физику в виде отрицания существования «пустого» пространства, то есть пространства, лишенного свойств. Правда, вместо слова «эфир» теперь пользуются словом «вакуум» (то есть «пустота»), понимая его совсем не как пустоту, что несколько сбивает с толку.
Поясню терминологию на примере. Возьмем какую-нибудь частицу (ну хоть электрон) и поместим ее в ящик размерами L х L х L. Согласно квантовой механике электрон не может пребывать там в состоянии покоя, он будет метаться из конца в конец ящика, как арестованный, только что брошенный в одиночную камеру. Согласно принципу неопределенности Гейзенберга типичная скорость этого движения (v) обратно пропорциональна размеру ящика v ~1/L и, следовательно, энергия движения ~1/L2. То же самое произойдет с какими угодно частицами, помещенными в ограниченный объем пространства. А именно: у них будет некая конечная энергия, меньше которой быть уже не может. То есть нельзя их остановить совсем. В физике этот неотъемлемый минимум называется энергией основного состояния. Энергия эта, как следует из вышеприведенного объяснения, зависит от объема (и даже формы) ящика, в котором частицы содержатся. Пока объем ящика не меняется, основное это состояние воспринимается нами как «пустое» пространство. Однако как только мы попробуем изменить объем, то сразу поймем, что в нем что-то есть, так как, меняя объем ящика, мы изменим минимальную энергию находящихся в нем частиц, для чего нам самим нужно будет затратить некое усилие.
А теперь представим, что ящик — это Вселенная. Заполнена она всякого рода частицами и полями (свет, нейтрино, все, что угодно). Раз так, то у «пустого» пространства есть некая энергия, изменение которой будет ощущаться, когда пространство меняет объем, то есть, например, расширяется, как это происходит с нашей Вселенной. Это и есть та самая «темная» энергия, о которой в последнее время заговорили физики. На ее долю, по современным оценкам, приходится довольно значительный процент общей энергии Вселенной. Загадка, однако, состоит в том, что все существующие теории предсказывают, что доля эта должна быть просто неизмеримо, невообразимо больше, чем это наблюдается. В настоящее время противоречие это остается неразрешенным, указывая, быть может, на грядущую революцию в физике.
«Есть только атомы и пустота», — сказал Демокрит. В предыдущей медитации мы размышляли о том, что атомы оказались не тем, что о них когда-то думали. Оказывается, что и пустота тоже не то, что о ней думали, так как она не так уж и пуста.
Принимая разные формы, появляясь, исчезая и меняя лица, И пиля решетку уже лет, наверное, около семиста, Из семнадцатой образцовой психиатрической больницы Убегает сумасшедший по фамилии Пустота.Медитация 3. Есть?
…Так быть или не быть, вот в чем вопрос.
Человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить.
Итак, взяв за основу утверждение Демокрита и Левкиппа «есть только атомы и пустота», мы поразмышляли над атомами и пустотой. Остались, однако, еще слово «только» и глагол «есть». Хорошо, скажет читатель, материя есть не то, что мы думали, пустота тоже не пуста, но они же все-таки есть? Ведь скрывается же за изменчивой поверхностью нашего мира какой-то неколебимый субстрат, хотя бы в этом-то правы древние атомисты? Об этом субстрате нам многое ныне известно, присмотримся к нему поближе.
Формальное математическое описание того, о чем я собираюсь здесь говорить, дано (в краткой форме) в Приложении к этой книге, а также может быть найдено в любом учебнике по квантовой механике, которых ныне существует огромное количество.
Удаляясь в погоне за «реальностью» от мира привычных нам «больших» вещей в глубь микромира, мы не находим того, что искали. Реальность микромира оказывается зыбкой: вместо мира определенностей, каким является привычный нам мир «больших» предметов, «данный нам в ощущениях», мы находим мир возможностей и неопределенностей. Приписывая обитателям этого мира тот же статус вещей, что и окружающим нас предметам, нам приходится отказаться оттого, что Аристотель называл законом исключенного третьего. Макроскопический предмет, например, кошелек или автомобиль, не может быть в двух местах одновременно. А квантовая частица, если ее рассматривать как физический объект, может. Электрон, будучи практически точечной частицей, может пройти одновременно в два или несколько удаленных друг от друга отверстий, в молекулах и кристаллах он может одновременно находиться около разных ядер (на этом эффекте и основана химическая ковалентная связь). Для того чтобы получить согласованное описание экспериментов с квантовыми объектами, приходится признать, что быть и не быть они могут до определенной степени вернее, с той или иной амплитудой (см. Приложение). Читатель, наверное, слышал о том, что квантовые частицы являются в то же время и волнами. Так вот, то, что там волнуется и колеблется, есть их бытие, степень их реальности, измеряемая количественно волновой функцией. В упомянутом выше эксперименте, где электрон попадет на фотопластинку через экран с несколькими отверстиями, он делает это, проходя одновременно через каждое из них с определенной амплитудой. Амплитуды от разных отверстий складываются, и происходит интерференция, как у всяких волн. И, как у всяких волн, картинка радикально меняется, когда одно из отверстий закрывают.
Грань между квантовым миром и миром классическим, где гамлетовский вопрос имеет однозначный ответ, пролегает приблизительно там, где отказывают наши органы чувств, даже усиленные приборами, которые, думаю, можно считать их продолжением. Странные состояния, когда электрон в молекуле водорода находится одновременно около обоих ядер, называются в квантовой механике запутанными, а состояния, близкие к классическим (в данном случае такое состояние будет описывать электрон, находящийся у какого-то конкретного ядра) — чистыми. Микроскопические системы, будучи приведены в контакт с «большими» предметами, теряют свои странные свойства. Если бы кто-то взялся измерять положение электрона каким-нибудь прибором (а все наши приборы соразмерны нашим телам, то есть в этом смысле они «большие»), то перевел бы его из запутанного состояния в одно из чистых. Вся фишка квантовой механики состоит в том, что результат этого опыта невозможно предсказать с определенностью. Нельзя заранее сказать, около какого ядра мы обнаружим электрон. Если молекула симметрична, то в половине опытов он окажется у одного ядра, а в половине — у другого. Поэтому квантовая механика, в отличие от классической, не претендует на однозначное предсказание будущего, более того, она даже настаивает, что такое предсказание невозможно. В отношении к биологии этот аспект квантовой механики имеет прямое касательство к важной в философском отношении проблеме свободы воли.
Переход запутанного состояния в чистое называется потерей когерентности. Потеря эта происходит не мгновенно, она занимает некоторое время, и, в зависимости от деталей эксперимента, это время может оказаться значительным. Вопрос о потере когерентности долго оставался неясным, но после работ А. Калдейры и А. Легетта в 1980-е годы стало понятно, что никакого внезапного коллапса волновой функции в ходе измерения не происходит.
Предрассудок, распространенный за пределами физики, где многие тоже слышали о «принципе неопределенности», состоит в том, что неопределенности квантовой механики есть недостатки нашего знания. Ну вот, мол, пытаемся измерить скорость и координату электрона, однако самим актом измерения меняем либо то, либо другое. Отсюда и неопределенность. Похоже на то, как предсказания о динамике рынка акций влияют на эту самую динамику. Иначе говоря, есть какое-то «в самом деле», какая-то определенность, которой следуют частицы, если их оставить в покое, и которую мы, будучи такими большими медведями, возмущаем, стараясь ее познать. Иммануил Кант называл эту определенность «вещами в себе». Однако оказывается, что такое понимание неверно. Если бы дела обстояли так, как описано выше, то были бы определенные косвенные последствия, сформулированные так называемой теоремой Белла об отсутствии скрытых параметров. Таких последствий на экспериментах не наблюдается. И вместе с тем, все самые экзотические предсказания квантовой теории получили экспериментальное подтверждение. Поэтому среди ученых считается признанным, что неопределенность есть не недостаток нашего знания, а фундаментальное (онтологическое) свойство микромира.
Одним из строжайших правил квантовой физики, нарушающие которое производят, по выражению Ландау, «патологические» работы, является то, что она согласна обсуждать только те результаты, которые являются наблюдаемыми. Описание же того, что наблюдать невозможно, оказывается до определенной степени произвольным. Модели, фундаментально отличные друг от друга во всех отношениях, кроме того, что они одинаково описывают одни и те же «наблюдаемые», признаются эквивалентными (кстати, ваш покорный слуга и сделал карьеру в физике, занимаясь поисками таких эквивалентных описаний). На первый взгляд может показаться, что здесь проявляется сугубый материализм науки. На самом же деле, настаивая на наблюдаемости, мы подрываем веру в реальность мира микроскопических частиц как мира вещей, того самого «есть», о котором говорили древние атомисты. За пределами мира материального, поставленными нам нашими органами чувств, начинается мир чисел и математических моделей, о котором речь пойдет ниже в медитации «О числах». Хотя этот мир нельзя ни увидеть, ни ощутить в принципе, и в этом смысле он не материален, он не есть наша выдумка, и, будучи не подвластен нашему произволу, он объективен. Недаром Владимир Ильич всполошился, услыхав о робких еще тогда шагах новой физики: «Материя исчезла, остались одни уравнения!» («Материализм и эмпириокритицизм»).
И вот итог: гипотеза Демокрита и Левкиппа оказалась ложной. Нет ни атомов, ни пустоты, и даже глагол «есть» приходится понимать в такой форме, в которой никто ранее не мог себе представить. В современной физике материализм потерпел абсолютный крах — оказалось, что мир невозможно разъять на части. И недаром многие современные наследники «Дидерота-философа», возлагавшего такие надежды на просвещение, являются врагами и науки, и образования.
Физтех подошел к концу. Я закончил его в 1977 году с красным дипломом. Мне повезло, я устроился в «Давильню» стажером и летом того же года переехал из московского общежития Физтеха в подмосковный городок Троицк, на сороковом километре Калужского шоссе, где «Давильня» находится до сих пор. На пятом курсе института мне удалось сменить профиль работы, и теперь я числился теоретиком.
Глава 4
Начало научной карьеры
Не знаю, что стало с ним сейчас, но в конце 1970-х годов Троицк был очень милым городком, протянувшимся вдоль Калужского шоссе. На стороне шоссе, противоположной городку, далеко-далеко простирался лес. Летом в лесу этом было полно грибов, что и составляло основную часть моего рациона. До переезда в Троицк я грибами никогда не увлекался, так как в тех местах, где я жил, их просто не было. А тут на меня нашло вдохновение: я купил маленький справочник по грибам, где, например, было очень толково описано, как отличать ложные (смертельно ядовитые) опята от настоящих, и, вооружившись им, пошел в лес. Первые же грибы, на которые я наткнулся, были именно опята. Ложные росли едва ли не вперемежку со съедобными, но, следуя книге, я выбрал жизнь и с честью выдержал испытание. С тех пор моя страсть к грибам никогда не умирала, хотя до такой утонченности в их употреблении, как Виктор Пелевин, я не доходил и вратами в духовный мир для меня они никогда не служили.
Мне дали маленькую комнатку в четырехкомнатной квартире, выполнявшей роль одного из общежитий «Давильни». Каждую комнату квартиры занимали молодые сотрудники института; в проходной комнате, где тоже стояли кровати, в момент моего появления никто еще не жил, хотя в скором времени жилец появился и там. После шести лет в физтеховских общагах иметь отдельную комнату было почти райским блаженством.
Я уже говорил, что проходная комната в нашей квартире некоторое время пустовала. Но однажды дверь в мою комнатку отворилась и на пороге возникла босая фигура в майке на голое тело и в армейских галифе. В одной руке фигура держала портянку. «Вот, сорок лет и — портянка!» — изрекла фигура, считая, по-видимому, формальное представление излишним. Это был наш новый пожарник. К счастью, появлялся он не каждую ночь и, даже когда появлялся, не каждый раз напивался до потери сознания.