Журнал «Компьютерра» №25-26 от 12 июля 2005 года
Шрифт:
В своих работах Хокинг впервые предсказал процесс «испарения» черной дыры, сопровождающийся специфическим излучением, впоследствии названным его именем. Он показал, что это излучение должно иметь абсолютно случайный характер. Иными словами, черная дыра представляет собой «генератор белого шума», не содержащего никакой информации ни о процессах, протекающих внутри черной дыры, ни о структурных особенностях вещества, поглощенного черной дырой.
Впрочем, некоторые исследователи, устояв перед колоссальным авторитетом Хокинга, предложили свою модель процессов, протекающих в окрестности черных дыр. Леонард Сасскинд (Leonard Susskind, Стэнфордский университет), Джон Прескилл (John Preskill, Калифорнийский
Вычисления осуществляются черной дырой чрезвычайно быстро. Фактически время вычислений не зависит (!) от объема обрабатываемой информации, а определяется лишь геометрическими размерами дыры. В теории показано, что время вычислений оказывается равным промежутку времени, который требуется свету, чтобы пройти от одной границы этого «вычислителя» до другой. Так, для килограммовой черной дыры время вычисления равно 10-35 с. Собственно говоря, черная дыра представляет собой самый быстродействующий вычислитель, возможный в нашем Мире.
Ученым пока не очень понятны механизмы «вывода результатов» вычислений черных дыр. И уж совершенно неясно, каким образом программировать вычисления столь экзотического «компьютера». Теоретически известно, что черная дыра способна осуществить любое вычисление, но как приготовить исходное состояние (структуру? последовательность? пространственное или временное распределение?) падающего в черную дыру вещества, чтобы в результате излучение Хокинга «выдало» искомый результат, не знает никто.
Высокая плотность и сложность строения твердых тел порождают огромное количество физических явлений, одновременно «сосуществующих» в объеме материала. Если же добавить сюда ярко выраженные нелинейные свойства твердых сред, приводящие к возникновению взаимовлияний физических явлений, эффектов усиления, генерации, «перекачки» энергии от одних физических процессов к другим, становится понятно, почему внимание исследователей приковано к проблеме создания монолитных твердотельных устройств обработки информации. Большинство ученых и инженеров считают, что именно твердое тело будет основой вычислительных устройств (или сред?) будущего, хотя на пути их создания стоят невероятные трудности математического моделирования физических процессов, протекающих в нем.
Можно выделить два принципиально разных подхода к решению этой задачи: интегральный и функциональный. Реализацией интегрального подхода стали полупроводниковые микросхемы всех современных типов. Функциональный подход породил множество удивительных устройств, нашедших применение в СВЧ-технике, связи и автоматике. Тем не менее теории синтеза твердотельных систем обработки данных до сих пор не существует.
Еще в 60-х годах прошлого столетия в работах исследователей была поставлена задача создания так называемых управляемых континуальных сред, то есть твердых сред, способных непосредственно принимать сигналы извне, обрабатывать содержащуюся в них информацию и выдавать результат. Задача эта оказалась чрезвычайно сложной, и решить ее в общем виде пока не удалось.
Математическое моделирование процессов в твердых телах дало важные сведения касательно того, каким образом «группировать» протекающие там процессы с целью их совместного использования. Стало понятно, что континуальные вычислители легче строить на базе явлений, параметры которых сильно взаимосвязаны, - например, магнитоэлектрических, термомеханических, электронно-механических процессов, фотонно-фононных взаимодействий и т. д. Для формализации синтеза континуальных систем обработки данных предпринимались попытки использовать аппарат теории автоматов и строить графы взаимодействия физических процессов, где каждый элементарный автомат представляет то или иное физическое явление в твердом теле, а ребра графа описывают взаимовлияния.
Отдельно стоит упомянуть проекты использования квантовых процессов в твердых телах. Чтобы не связываться с техническими трудностями получения и поддержания экстремально низких температур, многие исследователи занялись разработкой приложений квантовой оптики твердых сред, большинство явлений которой протекают при обычных температурах. Вероятно, самым поразительным результатом этих работ можно считать фотонные кристаллы - искусственно синтезированные твердотельные структуры, обладающие рядом необъяснимых с позиций классической оптики свойств, а также способностью воспринимать и обрабатывать информацию, «закодированную» в параметрах когерентного оптического сигнала. Однако инженерные методики конструирования вычислительных сред на базе фотонных кристаллов еще предстоит создать.
– Ю.Р.
Меж нулем и единицей
Впрочем, грех жаловаться - этот принцип оказался столь гибким в приложениях, что даже принципиально новые идеи вычислительных устройств (например, нейроподобные сети или системы с нечеткой логикой) вначале реализуются в виде программ для «обычных» компьютеров. Зачастую они в этом виде так и остаются навсегда… Все это наводит на мысль, что, возможно, «компьютеры послезавтрашнего дня» с точки зрения «железа» не будут чем-то особенным отличаться от нынешних, но вот процессы, протекающие в их недрах, скорее всего, будут совсем другими.
Вот об этих «других процессах» мы и поговорим.
Аналоговые вычислительные машины (АВМ), как известно, устроены не по принципу арифмометра. Обрабатываемая информация в них представляется теми или иными физическими величинами - чаще всего электрическими: напряжением, током, сопротивлением, реже - частотой или интервалами времени. Однако во всех случаях это измеряемые величины, которые доступны непосредственному измерению при помощи прибора.
Кроме измеряемых величин, физические процессы характеризуются также вычисляемыми параметрами, которые недоступны непосредственному измерению прибором и в то же время не всегда сводимы к простым процедурам арифметических манипуляций с измеряемыми величинами. Вычисляемые параметры тоже являются аналоговыми величинами, так как могут непрерывно приобретать любые, сколь угодно мало отличающиеся друг от друга значения. Принципиально важно, что эти величины тоже могут быть носителями информации, подлежащей обработке или запоминанию.