Журнал "Компьютерра" №746
Шрифт:
Авторы статьи исходили из того, что не только рисунок, но и химический состав выделений кожи человека индивидуален. Кроме того, на ней еще долго остаются микроскопические количества веществ, которых человек касался накануне. В принципе, их можно обнаружить с помощью обычного масс-спектрометра.
Да вот беда, этот прибор не назовешь компактным и простым. И хотя криминалисты иногда используют его в своей работе, о широком распространении речи не идет.
Для анализа
Полученную таким образом плоскую картину химического состава поверхности ленты прогоняют через специальный софт, который, опираясь на распределение ионов, выделяет отпечатки разных людей. Их тотчас можно сравнить с базой данных и выяснить, кто из рецидивистов засветился на месте преступления. Попутно обнаруживаются и следы запрещенных веществ вроде наркотиков или взрывчатки.
Ученые уже приступили к коммерциализации своего прибора, который будет выпускаться американской компанией Prosolia.
Впрочем, действующий при комнатной температуре и нормальном давлении метод, названный авторами десорбционной электроспреевой ионизацией (DESI), удобен для работы не только с отпечатками пальцев, но и с самыми разными образцами - от неизвестных таблеток и культур бактерий до пластиков. ГА
Новую удивительную форму углерода - колоссальные углеродные трубки - вырастила команда ученых Фуданского университета (Fudan University) из Китая и Лос-Аламосской национальной лаборатории США. Поразительный набор свойств этих волокон обещает их широкое применение в самых разных областях, от текстиля до электроники.
Новые формы углерода - фуллерены, углеродные нанотрубки, карбоновая нанопена и графен - в последнее время очень популярны. Но если фуллерен или нанотрубку с некоторой натяжкой еще можно считать огромной молекулой из углерода, то новый материал уже ни в какие классификации не вписывается. Новые трубки имеют просто гигантский диаметр 40–100 мкм и длину до нескольких сантиметров. Они видны невооруженным глазом и похожи на волокна хлопка или другого текстиля. Такие трубки ученые научились получать с помощью химического осаждения паров, нагревая в кварцевой печи смесь этилена и парафинового масла до 850 градусов Цельсия. Но каким образом атомы самоорганизуются и вырастают в столь гигантские структуры, пока остается загадкой.
С помощью электронного микроскопа удалось разглядеть, что стенки трубок имеют толщину около микрона и состоят из прямоугольных пор размером от сотен нанометров до нескольких микрон. Стенки пор, в свою очередь, имеют слоистую структуру, как у графита. Колоссальные углеродные трубки очень легки, их плотность не превышает десяти миллиграмм на кубический
Такое сочетание свойств и подходящие размеры делает заманчивым применение колоссальных углеродных трубок вместо обычных текстильных волокон для изготовления прочных тканей и даже бронежилетов. Причем для этого можно использовать обычные ткацкие станки и другое текстильное оборудование. Из таких трубок удастся изготавливать очень прочные и легкие композиты. Отдельные трубки могут пригодиться в медицине и, возможно, в электронике и микромеханике.
О конкретных коммерческих приложениях колоссальных углеродных трубок говорить пока рано. Сейчас ученые продолжают их изучение и стремятся усовершенствовать технологию изготовления. Но не исключено, что это открытие станет знаковым.
Вместо того чтобы получать новые материалы на наномасштабах, а потом придумывать, как изготовить из них что-то полезное привычных размеров, технологи будут сразу выстраивать атомы в практически готовый продукт. ГА
К удивительным выводам пришла группа итальянских физиков после подробного анализа экспериментов двенадцатилетней давности. Оказывается, около четверти антипротонов с низкой энергией, вместо того чтобы аннигилировать, просто отражаются от слоя алюминия. Возможно, этот эффект подскажет новые способы хранения антивещества.
Свои эксперименты итальянцы проводили в Европейской лаборатории CERN с 1990 по 1996 год. Они изучали, как медленные антипротоны с энергией 1–10 килоэлектронвольт взаимодействуют с обычным веществом, возбуждая в нем экзотические атомные состояния. В эксперименте антипротоны, прежде чем попасть в мишень, пролетали сквозь цилиндр диаметром 25 и длиной 75 см, заполненный небольшим количеством водорода или гелия. Когда антипротон сталкивался с ядром атома газа, он аннигилировал с протоном, а координаты и время этого события регистрировалось детекторами, позволяя контролировать параметры пучка антивещества. Странным было то, что акты аннигиляции разбивались на две явно различные группы, что в тот момент не нашло внятных объяснений.
Теперь ученые смоделировали пучок антипротонов на компьютере, и ситуация прояснилась. Оказывается, вторая группа аннигилировавших в газе протонов просто отражалась от мишени из-за многократного резерфордовского рассеивания антипротонов на ядрах алюминия. Дело в том, что ядро примерно в сто тысяч раз меньше самого атома, а аннигиляция случается, только если антипротон попадает точно в ядро. Если антипротон промахивается, он отклоняется от направления полета электрическим полем атома, то есть рассеивается. После нескольких десятков актов такого рассеивания, проникнув в слой алюминия примерно на 5–10 нм, антипротон совсем "забывает", откуда прилетел. При этом с большой вероятностью он может вылететь из мишени, то есть отразиться от нее, как от диффузного зеркала.