Знание-сила, 1998 № 02 (848)
Шрифт:
Удвоение ДНК — очень сложный процесс. Им управляют специальные белки, которые движутся по «винтовой лестнице» этой молекулы, как застежка по «молнии» на одежде. Продвигаясь от одного конца молекулы к другому, они «расстегивают», разделяют ее на две одиночные цепи и одновременно раскручивают сами эти цепи. По мере того как такой «расстегивающий» молекулу белок продвигается вдоль нее, позади него два других белка, иного типа, движутся по двум расплетенным и отделенным друг от друга цепям молекулы и присоединяют к свободным участкам этих цепей химические звенья, дополняющие каждую цепь снова до двойной лесенки, а затем закручивают обе получившиеся лесенки винтом. Таким образом, пока первый белок расплетает винтовую лестницу исходной ДНК, позади него непрерывно нарастают две новые винтовые
В этом описании есть, однако, небольшая неточность. Дело в том, что в действительности два задних белка, строящих новые молекулы, работают неодинаково. Один из них всегда движется в ту сторону, что и передний, «расплетающий» исходную молекулу белок, а вот второй способен двигаться только в противоположном направлении. Поэтому ему приходится все время совершать своеобразные прыжки: сначала он приближается вплотную к переднему белку и с этого места начинает двигаться назад, строя очередной участок новой ДНК; за это время передний белок продвигается немного вперед, расчищая для него новый строительный участок; задний белок-строитель совершает прыжок, снова приближаясь вплотную к переднему, а затем опять начинает пятиться от него назад, заполняя очередной участок новой ДНК — и так до конца.
До конца — да не совсем! Поскольку описываемый белок-строитель (тот, что способен двигаться только вспять) должен каждый раз держать под контролем весь освободившийся участок строительства, ему нужны «крепежные места» на концах этого участка. Пока работа по созданию двух новых ДНК идет в основной части исходной молекулы, это требование легко выполнимо; но когда процесс такого строительства доходит до конца исходной молекулы, у белка-строителя не остается одного «крепежного места» — одна его «рука», так сказать, повисает в пустоте. И самый последний участок исходной молекулы остается недостроенным, неудвоенным. Имеются белки еще одного, третьего типа, которые этот дефектный участок отрезают.
В результате удвоение оказывается неполным — самые кончики исходной ДНК не удваиваются, а всякий раз отрезаются. И понятно, две новые молекулы ДНК, получившиеся при каждом очередном делении, должны поэтому оказаться несколько короче исходной. (У внимательного читателя в этом месте может возникнуть вопрос: не означает ли такое укорочение дочерних ДНК, что в них осталось меньше генетической информации, чем в материнской? Биологи, которые тоже задумались над этим, вынуждены были заключить, что та информация, которая содержится в концах молекул ДНК, является, по всей видимости, не нужной для жизнедеятельности клетки: это просто запасные, лишенные всякого генетического смысла, «буферные» химические звенья, призванные дать молекуле возможность укорочения без потери важной информации.)
Эти-то буферные концы ДНК (или тех хромосом, внутри которых упакованы ДНК) и есть теломеры.
А весь тот сложный процесс, который мы выше попытались грубо, но наглядно представить, можно коротко выразить двумя-тремя фразами: при каждом очередном делении клетки теломеры ее хромосом несколько укорачиваются, а обусловливается это тем, что белки, заведующие удвоением хромосом (происходящим перед всяким делением клетки), теряют свою эффективность, как только дело доходит до удвоения их концов (то есть теломер). Иначе говоря, теломеры не способны копироваться полностью, а потому каждый раз, когда клетка делится, ее теломеры теряют часть своей длины. Что немедленно подталкивает к ошеломляющему выводу: количество возможных делений клетки, то есть время ее жизни, ограничено исходной длиной ее теломер, ибо как только эти теломеры укоротятся до минимально допустимой длины, клетка утратит способность делиться — она умрет.
Именно так родилась гипотеза, связавшая теломеры со старостью. По существу, она впервые предложила наглядное, молекулярное объяснение процесса старения и смерти. По мере старения организма, говорила она, его теломеры становятся все короче, пока, наконец, не достигают той минимальной длины, на которую исходно рассчитаны. Эта их исходная длина
Одного этого открытия было бы достаточно, чтобы обессмертить крохотные теломеры. Но этим дело не кончилось. В самое последнее время на теломеры обратили свое внимание и специалисты по СПИДу. Оказалось, что в иммунных клетках определенного типа теломеры, в результате атаки вируса СПИДа, укорачиваются намного больше, чем им положено по возрасту,— как будто атака вируса эквивалентна быстрому искусственному старению. Эти результаты породили гипотезу, что, возможно, то же самое происходит в иммунных клетках всех других типов, и тогда воздействие вируса на организм сводится к преждевременному изнашиванию его иммунной системы (на «молекулярном языке» — к преждевременному укорочению его теломер). Опять- таки весьма соблазнительная в своей простоте и общности гипотеза, согласитесь.
Напомним, что все эти открытия следовали одно за другим, и каждое поднимало теломеры еще на одну ступеньку славы: вот они объясняют старение, вот они объясняют рак, а вот уже и загадочный СПИД тоже оказывается связан с ними. И вдруг — как удар литавр в самой высшей точке симфонического накала — прозвучал громовой голос: все эти гипотезы являются ошибочными! Теломеры не имеют абсолютно никакого отношения ни к старению, ни к раку, ни к СПИДу!
В научной печати были опубликованы результаты новых исследований. Если верить им, то теломеры вовсе не сокращаются с каждым делением в нормальных клетках и вовсе не остаются неизменными в раковых клетках. Авторы этих новых работ — Элизабет Блэкберн из Калифорнийского университета и Тития де Ланге из университета Рокфеллера.
Что же послужило основанием для столь радикального пересмотра всех прежних представлений? Какие новые результаты понудили Блэкберн и де Ланге вынести теломерам столь суровый приговор?
Как утверждают эти исследовательницы, все прежние экспериментальные выводы, указывавшие на непрерывное сокращение теломер при каждом очередном делении, были ошибочными, потому что базировались на слишком малом числе наблюдений. В экспериментах Блэкберн и де Ланге была прослежена достаточно длинная последовательность делений, и это позволило им обнаружить, что после некоторого периода укорочения длина теломер снова начинает возрастать, пока не достигает прежней величины; после этого она опять начинает укорачиваться, и так далее. Иными словами, достаточно продолжительное наблюдение показывает, что процесс изменения длины теломер представляет собой не столько неумолимое укорочение, сколько чередование укорочений и удлинений — этакий «маятниковый» процесс!
По мнению Блэкберн и де Ланге, укорочение теломер не связано с каким бы то ни было «врожденными» особенностями белков, заведующих удвоением ДНК, а потому не является неизбежным. Напротив, когда длина теломер становится так мала, что на них остается очень мало белковых молекул, тогда сплошной белковый слой, прежде покрывавший теломеры, распадается, и белки, заведующие удвоением, получают возможность пробиться к концам молекулы ДНК. А следующее деление клетки сопровождается уже вполне нормальным удвоением ДНК, вместе с ее концами; в результате теломеры становятся чуть длиннее и с каждым новым делением продолжают удлиняться — пока не достигнут такой длины, когда удлинение снова сменится укорочением.