Чтение онлайн

на главную - закладки

Жанры

Золото, пуля, спасительный яд. 250 лет нанотехнологий
Шрифт:

При дальнейшем изложении проблемы лекторы и авторы книг испытают легкий дискомфорт. Единственным примером, который приходит им на ум при обсуждении “общего” метода получения нанообъектов методом “сверху-вниз”, служит банальное механическое измельчение. В рассказе о “революционных” технологиях оно выглядит как-то странно, отсюда и дискомфорт. У некоторых авторов это порождает желание “улучшить” ситуацию, и они записывают в технологии “сверху-вниз” методы, которые таковыми не являются. На руку им играет то, что во многих случаях при получении нанообъектов в качестве исходных используют макроскопические тела. Приведу один пример. Есть такая молекула – фуллерен С60, вылитый футбольный мяч, составленный из шестидесяти атомов углерода (о ней более подробно – в двенадцатой главе). Изумительно красивая молекула и размер – в точности один нанометр, поэтому фуллерен С60 часто используют в качестве символа или эмблемы нанотехнологий. Так

вот, получают его сейчас нагреванием при высокой температуре куска графита – в одну стадию! Чем не технология “сверху-вниз”? Но ведь механизм этого процесса состоит в том, что графит испаряется с образованием атомов углерода, которые в газовой фазе “собираются” в молекулу фуллерена, то есть перед нами классический пример метода “снизу-вверх”.

На самом деле примеры технологий “сверху-вниз” существуют, и по крайней мере один из них мы рассмотрим в дальнейшем. Не разделяю я и несколько пренебрежительного отношения к механическому диспергированию, которое по-прежнему служит наиболее универсальным, а в некоторых случаях и единственным, методом получения многотоннажных количеств нанодисперсных неорганических материалов. Несмотря на кажущуюся простоту, в этом методе имеется множество подводных камней, обойти которые невозможно без использования достижений высокой науки, основы которой были заложены Ребиндером.

Начнем с главного недостатка метода механического диспергирования – высокого энергопотребления. Понятно, что разрыв химических связей в твердых телах требует затрат большого количества энергии, равно как и обеспечение функционирования самих мельниц. Более того, чем мельче мы измельчаем вещество, тем больше удельный расход энергии. Вы уже понимаете, в чем тут дело: вначале в ход идут крупные дефекты (в них число контактов, которые необходимо разрушить, невелико), а затем все более мелкие трещинки, расколоть по которым крупинку вещества становится все сложнее.

Как можно уменьшить расход энергии? Тут на помощь приходит эффект Ребиндера. Не поленимся рассмотреть его еще раз, на этот раз с энергетической точки зрения. Поверхность любого объекта обладает избытком энергии по сравнению с его объемом, при размоле образуются новые поверхности, на обеспечение их “избыточной” энергии идет значительная доля энергии, затрачиваемой на весь процесс. Сорбция любого вещества на поверхности уменьшает величину ее избыточной энергии и, следовательно, затраты энергии на ее образование. Понятно, что для этого оба процесса – образование “горячей” поверхности и ее “гашение” сорбирующимся веществом – должны протекать практически одновременно. Но это как раз представить очень легко: если есть дефект – углубление на поверхности, заполненное жидкостью, то при механической нагрузке дефект превращается в трещинку, в которую немедленно втягивается жидкость, смачивая образующуюся новую поверхность. Современная техника позволяет наблюдать сей процесс воочию, и, поверьте, это стоит потраченного времени: создается впечатление, как будто жидкость “силой” проникает внутрь вещества, раздвигая стенки наметившейся трещинки.

Таким образом, правильный выбор адсорбирующегося (поверхностно-активного) вещества обеспечивает заметное снижение энергозатрат. Более того, измельчить твердые материалы механическим способом до частиц размером порядка десяти нанометров без добавления сорбирующихся на поверхности веществ никому пока не удалось.

И вряд ли это возможно в принципе. Ведь модификаторы поверхности выполняют еще одну важную функцию – они препятствуют плотному слипанию образующихся наночастиц. Даже если нам удастся расколоть частицу пополам в отсутствие модификатора, то половинки могут встретиться вновь и – слипнуться. Отчасти поэтому при механическом размоле независимо от его продолжительности всегда образуются порошки с очень широким разбросом по размерам частиц, например от двадцати до двухсот нанометров.

Надо сказать, что стремление наночастиц к слипанию и агрегации – едва ли не главная головная боль всех специалистов, работающих в области нанотехнологий. Причина заключается в упомянутой выше избыточной поверхностной энергии, которую частицы стремятся уменьшить за счет слипания. В сущности, это ничем не отличается от слияния двух капелек ртути. Как говорят ученые, – самопроизвольный процесс.

“Голая”, изолированная наночастица – редчайшее исключение из общего правила [11] . Если исследователи хотят получить именно изолированные наночастицы, то независимо от использованного подхода – “сверху-вниз” или “снизу-вверх” – им приходится одевать их в защитную шубу из тех же поверхностно-активных веществ, препятствующих слипанию. Процедура эта обязательная, настолько обязательная, что многие даже не упоминают о ней как о чем-то само собой разумеющемся, и для простоты говорят, например, о наночастицах золота, забывая добавить “стабилизированных

тем-то и тем-то”. Это порождает недоразумения даже в кругу специалистов, ведь одни и те же наночастицы золота, покрытые разными модификаторами, – по сути дела, разные вещества, отличающиеся по свойствам. И это составляет еще одну большую проблему нанотехнологий – зависимость свойств наночастиц от их предыстории, мало ли что они могут нахватать из раствора или атмосферы в процессе получения, выделения и очистки (последнее слово в этой связи звучит несколько двусмысленно).

11

Здесь мы говорим о частицах неорганической природы – основном классе веществ, подвергаемых механическому измельчению. В то же время белки могут находиться в растворе в изолированном состоянии, но для этого Природе в ходе эволюции пришлось сильно постараться и выработать собственные защитные механизмы предотвращения агрегации.

Да, сложности есть, но они решаемые. Специалисты в области коллоидной химии за многие десятилетия накопили колоссальный опыт по стабилизации наночастиц, которые они на своем языке называют золями. Они научились также использовать во благо стремление частиц к слипанию, направляя этот самопроизвольный процесс в нужную им сторону, от максимально плотного заполнения пространства (это необходимо, например, для получения сверхпрочных керамик) до создания ажурных, воздушных структур.

(Эпитет “воздушный” – отнюдь не метафора. Есть такое вещество – аэрогель, представляющий собой пространственную сетку, составленную из наночастичек диоксида кремния. По своему химическому составу это тот же песок или всем известный силикагель, да и получают его так же, но с некоторыми технологическими ухищрениями, в которые мы углубляться не будем. Аэрогели диоксида кремния – одни из самых легких твердых веществ, существующих в природе. Их плотность достигает 1,9 кг/м3, что всего лишь в полтора раза больше плотности воздуха. При всей своей “воздушности”, они весьма прочны и способны выдерживать механическую нагрузку, в тысячи раз превышающую их собственный вес. Они являются отличными теплоизоляторами, что удачно сочетается с их высокой термостабильностью – температура плавления аэрогелей диоксида кремния составляет ~1200 °C. Это делает их чрезвычайно перспективными для применения в самых различных областях, от строительства до аэрокосмической отрасли.)Все эти исследования составляют в настоящее время одну из важнейших частей нанотехнологий. Научные основы этих технологий были заложены еще в первой трети прошлого века и весомый вклад в них внесли работы Петра Александровича Ребиндера, выдающегося ученого и потрясающего человека.

Глава 5 Био и Нано – близнецы-братья

Название главы навеяли строки из поэмы Владимира Маяковского. Немного перефразировав “лучшего и талантливейшего поэта советской эпохи”, продолжим:

“Био и Нано – близнецы-братья.

Кто более матери Природе ценен?

Мы говорим Био – подразумеваем Нано,

Мы говорим Нано – подразумеваем Био”.

Постараюсь доказать вам, что это сопоставление по меньшей мере столь же верно, как утверждение Маяковского о тандеме Партия – Ленин, и что привычные нам био технологии есть в основе своей не что иное, как нано технологии.

В качестве главного персонажа этой главы я выбрал человека, чей приоритет в рассматриваемой области признается всеми, включая гуру истории науки Айзека Азимова. Звали его Константин Готлиб Сигизмунд Кирхгоф, по-нашему, Константин Сигизмундович.

Константин Кирхгоф родился в 1764 году в местечке Тетеров немецкого герцогства Мекленбург-Шверин в семье аптекаря. Фармацевтическое и химическое образование он получал, помогая отцу в работе, после смерти которого продолжил семейную традицию и дослужился до звания гезеля – помощника провизора. В 1792 году Кирхгоф, как и многие немцы той поры, отправился в Россию, полагаю, что за “длинным” рублем, крепким и полновесным. Он устроился работать в Главную петербургскую аптеку, которой в то время управлял уже знакомый вам Товий Егорович Ловиц. Под его руководством Кирхгоф выполнил свою первую научную работу, опубликованную в 1795 году: “Об очистке хлебной водки (сивухи) при помощи древесных углей”.

Эта работа задала тон всей последующей научной деятельности Кирхгофа. Он не изучал явления, а решал практические задачи, которые ему в изобилии подбрасывали жизнь и правительство. По складу своего мышления он был технологом, а не ученым-естествоиспытателем. При этом Кирхгоф был, несомненно, наделен феноменальной научной интуицией, ведь он выдавал новые технологии на гора едва ли не ежегодно. Добиться такого результата лишь за счет немецкой основательности и методичности невозможно, они в какой-то мере даже мешают такой скорострельности, потому что исследователь надолго увязает в деталях и несущественных мелочах.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5