Золото, пуля, спасительный яд. 250 лет нанотехнологий
Шрифт:
Родился он в 1918 году в Англии во вполне благополучной и обеспеченной семье. Вскоре после этого его отец, практикующий врач, ударился в квакерство [19] , что наложило неизгладимый отпечаток не только на воспитание, но и на всю жизнь Фредерика. В 1936 году Сенгер поступил в престижный колледж Св. Иоанна в Кембридже (в этом городе он живет и поныне). Окончил колледж в числе лучших в 1939 году, на следующий год женился. Тут его жизнь, как и жизнь всех современников, чуть было не пошла наперекосяк из-за разразившейся Второй мировой войны, но он был квакером и имел по закону право отказаться от несения воинской службы. Он и отказался, а в 1943 году защитил диссертацию по биохимии.
19
Квакеры – христианское движение, возникшее во времена английской революции XVII в. Исповедовали всеобщее равенство, честность, простой образ жизни, отвергали официальную Церковь, присяги, клятвы и насилие во всех видах. За эти “не удобные” черты характера
В сущности, первое же самостоятельное научное исследование принесло Сенгеру всемирную славу. Он установил точное строение одного из белков – бычьего инсулина. Почему был выбран именно инсулин? Во-первых, в то время уже понимали роль инсулина при диабете, во-вторых, бычий инсулин был одним из немногих белков, доступных в чистом виде, и, наконец, это был самый маленький из известных белков – как выяснилось, он состоял всего из 51 аминокислоты [20] .
Сенгер придумал, как определить последовательность аминокислот в белке. Для этого он “разрезал” его на фрагменты – олигопептиды, состоявшие из небольшого количества аминокислот. Сделать это можно с помощью гидролиза кислотой или все тех же ферментов, выполняющих аналогичную роль в организме. Затем Сенгер разделял между собой и идентифицировал все эти фрагменты. У химиков для этого есть универсальный прием – сравнение с эталоном, специально синтезированным веществом с известной структурой. Понятно, что из двадцати различных аминокислот можно составить огромное количество, например, трипептидов (203=8000), но делать было нечего, пришлось синтезировать. И это было только первым этапом. Давайте представим, что каждая аминокислота обозначается своей буквой, и после анализа мы получили фрагменты ник и ель . Как они соединяются в белке? Это может быть никель или ельник , возможно также, что они далеко разнесены и между ними вклинились другие фрагменты: ник итасрубил ель . Чтобы прояснить это, надо взять другой фермент (каждый из них разрезает белок по-своему), повторить операцию и так до тех пор, пора все фрагменты, полученные во всех экспериментах, не сложатся в одну-единственную последовательность. Умопомрачительная работа, особенно если делать ее впервые в истории, не имея под рукой необходимых реактивов и отработанных методик. Сенгер затратил на нее семь лет.
20
Многие исследователи отказывают инсулину в высоком звании белка, называя его пептидным гормоном. Граница эта весьма условна, ведь с химической точки зрения белок – это длинный полипептид. Сколько аминокислот нужно соединить между собой, чтобы полипептид превратился в белок? Ученые договорились, что межевой камень лежит на количестве в 50 аминокислот. Подозреваю, что это было сделано отчасти для того, чтобы в число белков попал инсулин.
Он установил, что инсулин состоит из двух полипептидных цепочек, составленных из 30 и 21 аминокислот, соединенных между собой двумя дисульфидными мостиками. Из его данных также следовало, что аминокислоты в белке располагаются в строго определенной последовательности, а не хаотически. Кроме того, разработанный им метод был универсален и мог быть использован для установления строения любого белка. По проторенной дорожке анализ делался намного быстрее, и вскоре было установлен еще один принципиальный факт – каждый белок характеризуется уникальной аминокислотной последовательностью.
Это был подлинный прорыв и триумф. В 1958 году Сенгер получил свою первую Нобелевскую премию по химии. Как признавал сам Сенгер в автобиографии, столь быстрое признание немало помогло ему в жизни. Звание нобелевского лауреата дает всякие приятные привилегии: не надо заботиться о хлебе насущном и заниматься преподаванием, можно забыть о всяческих нудных административных обязанностях и полностью сконцентрироваться на науке или почивать на лаврах, это кому как нравится. Сенгер был довольно молод и выбрал занятия наукой.
В это время он перешел работать в кембриджскую Лабораторию молекулярной биологии вместе с Максом Перуцем (1914–2002), Джоном Кендрю (1917–1997), Аароном Клюгом (род. в 1926 г.) и Фрэнсисом Криком (1916–2004), все сплошь свежеиспеченные или будущие нобелевские лауреаты. Наступала эра ДНК, и вполне естественно, что интересы Сенгера сместились в эту область. Тем более что первостепенная задача там была все той же – установление точной последовательности нуклеотидов в цепи. Поначалу Сенгер использовал подход, столь успешно зарекомендовавший себя при исследовании белков, но по мере развития работ он внес в него много принципиальных изменений и усовершенствований. Сенгер упустил приоритет в анализе РНК, но восполнил потерю при анализе ДНК. Руководимой им группе удалось впервые расшифровать структуру ДНК бактериофага (5386 нуклеотидов), а затем митохондриальной ДНК человека (16 569 пар оснований). Разработанные Сенгером методы секвенирования ДНК были затем использованы при анализе генома человека. А сам он в 1980 году получил за эти работы вторую Нобелевскую премию по химии.В 1983 году в возрасте 65 лет Сенгер, как принято в цивилизованных странах, вышел на пенсию и с тех пор занимается садоводством в своем небольшом поместье близ Кембриджа. По его собственному признанию, вера в Бога покинула его.Сенгер ответил на вопрос о последовательности аминокислот в белках, сейчас мы называем это первичной структурой белка. Но еще до исследований Сенгера было понятно, что первичной структурой дело не ограничивается, должна быть как минимум еще одна, вторичная структура. Вытекало это из простого наблюдения: белки при нагревании денатурируют, буквально – теряют
Он родился в 1901 году в Портленде, США, в малообеспеченной семье. Вслед за ним родились две его сестренки, а в 1910 году их отец умер от прободения язвы желудка, оставив семейство практически без средств к существованию. Аттестат зрелости Полинг так и не получил (ему вручили его через сорок пять лет в знак уважения заслуг тогда уже дважды нобелевского лауреата), впрочем, у него были на то уважительные причины – вместо сдачи положенных экзаменов он зарабатывал деньги для продолжения образования. Потеряв год, Полинг поступил в колледж. Он еще не определился со своим призванием и слушал все курсы подряд, от математики до современной английской прозы и опять же непрерывно зарабатывал деньги на оплату учебы, житье-бытье и помощь матери. А на втором курсе Полингу несказанно повезло: ему предложили преподавать студентам количественный анализ, который он сам только что освоил. За сорок часов работы в неделю ему платили аж 25 долларов. Но жизнь постепенно налаживалась. Полинг определился с призванием – им стала химия, окончил университет, перебрался в Калифорнийский технологический институт, знаменитый Калтех, и в 1925 году защитил там диссертацию.
Его работа была связана с использованием метода рентгеноструктурного анализа, изобретенного за десятилетие до этого. При просвечивании кристалла рентгеновскими лучами на фотопластинке возникал сложный узор, состоящий из точек и дужек. Это было не изображение атомов или молекул, а образ плоскости, состоящей из атомов определенного сорта и расположенных в кристалле в строгой периодичности. Эта плоскость выступала в качестве дифракционной решетки для рентгеновских лучей. Из этого узора путем неочевидных и сложных математических вычислений можно было выявить картину пространственного расположения атомов в кристалле и рассчитать расстояние между центрами атомов. Отсюда, исходя из предположения о плотнейшей упаковке атомов в кристалле, можно было с высокой точностью оценить размер атома. Если же кристалл состоял из молекул некоего вещества, то можно было определить геометрию этой молекулы и рассчитать длину химической связи между определенными атомами. Все эти данные вывели химию на новый уровень развития. Для успешной расшифровки рентгеновских дифрактограмм надо было обладать высокой интуицией и хорошей математической подготовкой. С этим у Полинга все было в порядке.
В 1926 году Полинг отправился на двухлетнюю стажировку в Европу к Арнольду Зоммерфельду (1868–1951), Нильсу Бору (1885–1962), к тому времени уже нобелевскому лауреату по физике за создание теории строения атома, и Эрвину Шрёдингеру (1887–1961). Попал Полинг, как говорится, к самой раздаче, ведь именно в 1926 году Шрёдингер предложил свое знаменитое уравнение, легшее в основу квантовой механики. Полинг немедленно включился в работы в этой новой области науки и большую часть стажировки провел в Цюрихе, вместе с его ровесниками Вальтером Гейтлером (1904–1981) и Фрицем Лондоном (1900–1954), которые занимались первым квантово-механическим анализом молекулы водорода.
Во всей этой славной компании отцов – основателей квантовой механики Полинг был единственным химиком, что несомненно давало ему некоторое преимущество. Физики были сосредоточены на атомах, а он – на молекулах. Так что именно Полингу было суждено продвинуться дальше всех в квантовомеханическом объяснении природы химической связи. Многое из того, что составляет теоретическую часть современного школьного курса химии, создано Полингом. Природа ионной и ковалентной связи, шкала электроотрицательности элементов, гибридизация атомных орбиталей, объяснение строения различных органических соединений, от метана до бензола, – это все Полинг. Результаты своих десятилетних упорных исследований он обобщил в монографии “Природа химической связи и структура молекул и кристаллов”, вышедшей в 1939 году (в СССР – в 1947 г.) и ставшей настольной книгой нескольких поколений ученых.
В 1954 году Полингу за эти работы присвоили Нобелевскую премию по химии. В это время он уже занимался совсем другим. Полинг был увлекающимся человеком. И если уж он увлекался каким-нибудь делом, то отдавался ему со всей страстью. Но больше всего поражало то, что таких “страстных” дел у него одновременно было несколько и на все хватало времени и сил.
В середине 1930-х годов Полинг увлекся белками и доказал, в частности, что структура гемоглобина изменяется при связывании молекулы кислорода. Вот тогда-то он и попытался установить строение белков, просвечивая их кристаллы рентгеновскими лучами. Но картинки получались слишком запутанными из-за сложности строения самих белков, размытыми из-за несовершенства аппаратуры, да и обсчитать их было просто физически невозможно из-за отсутствия электронно-вычислительных машин – все расчеты в то время делались вручную! И тогда Полинг призвал на помощь свой мощный интеллект и представил себе, как может быть устроен белок. Перед его мысленным взором возникла спираль, в которую закручивается полипептидная цепь белка. Эта спираль с шагом в 0,54 нм скрепляется так называемыми водородными связями, образующимися между фрагментами аминокислот, находящимися на разных участках цепи. Еще одним вариантом самоорганизации полипептидной цепочки было образование “гармошки” подобной сложенному листу бумаги, эти структуры так и назвали – бета-листами, по аналогии с предыдущей структурой, которая получила название альфа-спирали. Так возникло представление о вторичной структуре белков, и в скором будущем гипотеза Полинга получила прямые экспериментальные подтверждения.