Золото, пуля, спасительный яд. 250 лет нанотехнологий
Шрифт:
Судьба была благосклонна к Ребиндеру. Несмотря на “сомнительное” происхождение и фамилию, он благополучно пережил и чистки 1930-х годов, и борьбу с космополитизмом в конце сталинской эпохи и всю жизнь имел возможность заниматься любимым делом.
Он любил жизнь во всех ее проявлениях. С детства собирал марки и к концу жизни обладал одной из лучших коллекций в нашей стране (сам он полагал, что несомненно лучшей). Он участвовал в создании Московского общества филателистов, а в 1966 году на 1-й Всесоюзной конференции ему вручили членский билет филателистического общества с номером 1.
Его любили женщины, собаки и студенты. И всем он отвечал взаимностью. До сих пор жалею, что мне не довелось лично услышать лекции Ребиндера: я поступил на химический факультет МГУ в год его кончины. Остались лишь многочисленные студенческие байки об этих лекциях, а такая память дорогого стоит. И дело было даже не в высочайшем научном уровне лекций или в том, что Ребиндер мог просто и доходчиво объяснить самые сложные вещи. Это была магия личности. Красивая
Приведу лишь одну студенческую байку. В конце лекции Ребиндеру передают записку. “Уважаемый Петр Александрович…” – начинает читать он вслух, пробегает глазами записку до конца и поднимает голову. – Уважаемый – так в мои молодые годы обращались к извозчику, – со сдерживаемой улыбкой говорит он. – В научной среде принято обращение глубокоуважаемый. Итак, глубокоуважаемый коллега, отвечаю на ваш вопрос”. Даже услышанная из вторых уст, эта байка так прочно засела в памяти, что до сих пор я вздрагиваю при виде обращения “уважаемый”, а рука сама печатает “глубокоуважаемый” при обращении ко всем людям независимо от возраста и профессиональной принадлежности.А еще Ребиндер любил показывать на лекциях опыты, не мультимедийные (тогда слова такого не знали), а самые настоящие. Как-то раз один нетерпеливый студент в самом начале курса лекций спросил, что такое эффект Ребиндера. Петр Александрович немедленно откликнулся и дал знак ассистентам. Они принесли кристаллизатор – это такой невысокий стеклянный цилиндр диаметром около полуметра и бадью с литром ртути, чуть меньше пятнадцати килограммов. Ртуть вылили в кристаллизатор, она заполнила его плотным слоем. Сверху налили воду из-под крана, в которой растворили щепотку какого-то вещества [10] . Ребиндер взял стеклянную палочку и, легким движением проведя ею по слою ртути, разрезал его пополам. “Вот это и есть эффект Ребиндера”, – сказал он. Эффект бы действительно потрясающий, и студенты завороженно смотрели на слой ртути, который рассекал явно видимый разрез. Этого не может быть! Не знаю как вы, а мы в детстве любили играть с капельками ртути, гоняя их туда-сюда или натирая ими двухкопеечную монетку и превращая ее в десятикопеечную. Весь наш опыт говорил, что капли ртути при соприкосновении сливаются в большую каплю, в этом проявляется действие сил поверхностного натяжения. А тут они лежали вплотную друг к другу – и не сливались. А Ребиндер между тем наносил палочкой новые разрезы, рисовал разные замкнутые фигуры, а затем, слегка покачивая кристаллизатор, заставлял эти разрезы менять форму, превращаться в идеальные прямые линии и окружности, соприкасаться с образованием причудливых фигур, похожих очертаниями на мыльную пену. Затем следовали легкие удары стеклянной, поистине волшебной палочкой – и разрезы смыкались. Следует сказать, что этот опыт завораживал не только студентов. Его засняли на кинопленку и продемонстрировали фильм на Международной научно-технической выставке в Брюсселе в 1958 году. Это был фурор.Опыт, конечно, эффектный, но мало приближающий нас к пониманию эффекта Ребиндера. Ведь речь шла, напомню, об адсорбционном понижении прочности твердых тел. И многим оппонентам, выдающимся физикам, было очевидно , что такого просто не может быть. Но так ли уж это очевидно? Поразительно, но с проявлениями этого эффекта мы сталкиваемся даже в быту. Вспомните невинную детскую шалость – слегка намочить мелок перед школьным уроком. Твердый мелок начинает крошиться и становится непригодным для писания на доске. Если намочить так все доступные мелки, то срыв урока гарантирован. Более конструктивное применение: возможно, вы обращали внимание на то, что кофе, перец, сахар гораздо легче и тоньше измельчаются в ручной мельнице или в ступке, если предварительно их немного смочить водой.
10
Ребиндер использовал раствор сапонина в воде – глюкозида, извлекаемого из многих растений, например мыльного корня.
В чем тут дело? Строение реальных твердых тел далеко от идеального кристалла, к которому апеллировали физики-теоретики. Посмотрите на свежий разлом камня или металла, и в большинстве случаев вы увидите четкую зернистую или, как говорят ученые, микрогетерогенную структуру. Внешне зерна могут выглядеть плотно прилегающими друг к другу, но на самом деле число контактов не столь уж велико и они относительно легко разрушаются при механической нагрузке. Именно поэтому прочность реальных твердых тел в десятки, а то и сотни раз меньше теоретических величин, рассчитанных для идеальных монокристаллов того же состава.
Итак, при нагрузке в месте соединения зерен появляется трещина, постепенно увеличивающаяся. Если мы
После такого объяснения эффект Ребиндера выглядит простым, даже слишком простым, не так ли? Но, несмотря на кажущуюся простоту, эффект снижения прочности может быть очень значительным – в разы. Главное – правильно подобрать адсорбирующееся вещество. Как и во многих других случаях, тут работает принцип подобия, близости химического строения и свойств для пары твердое тело – жидкость. Например, для металла нет ничего лучше… расплава металла. Или жидкого металла, например ртути. Цинковая пластинка легко гнется, и ей можно придать любую форму, но стоит смочить ее поверхность ртутью (или еще лучше – галлием, плавящимся при 30 °С), и она при нагрузке треснет на кусочки, как стекло. Это, кстати, один из опытов, который Ребиндер демонстрировал на лекциях.
Этот эффект широко применяется на практике. Возможно, вы видели, воочию или на экране телевизора, как бурят скважины или обрабатывают металлические детали на станках, и обратили внимание на то, что в скважину закачивают какой-то раствор, а на металлическую деталь постоянно льется какая-то жидкость. Очевидные объяснения, которые приходят на ум: это делается, во-первых, для охлаждения трущихся поверхностей и, во-вторых, для удаления образующихся мелких частичек горной породы или металла. Все это правильно, но не меньшее значение имеет содержащееся в растворе, специально подобранное поверхностно-активное вещество, которое уменьшает прочность обрабатываемого твердого тела и многократно увеличивает скорость процесса.
Что ж, с обычными материалами все понятно, скажете вы, причины эффекта кроются в их несовершенстве, но как обстоит дело с монокристаллическими твердыми телами, в которых отсутствуют внутренние поверхности раздела? Ведь недаром критики Ребиндера апеллировали именно к этим материалам? И тем не менее эффект адсорбционного снижения прочности наблюдается и в этом случае. Дело в том, что твердое тело может обладать идеальный внутренней кристаллической структурой, но поверхность-то его при этом будет неидеальной, на ней будут присутствовать разные впадинки, микротрещины, выступы и уступы. И именно в местах этих дефектов поверхности при механической нагрузке происходит разрушение кристалла. Начинается оно с образования трещины, а если рядом с этим местом находится поверхностно-активное вещество, то… см. выше.
Так есть ли предел процессу измельчения твердого тела? Есть. “Стоит только измельчить твердое тело на достаточно мелкие кусочки, и эти кусочки той же самой природы, того же состава будут наиболее прочными, почти идеально прочными”, – писал еще несколько десятилетий назад Ребиндер. Причина этого заключается в том, что описанное выше разрушение кристалла происходит по так называемым плоскостям спайности и в результате этого образуются идеально гладкие поверхности, то есть по мере разрушения происходит как бы идеальная огранка образующейся частицы. Ребиндер оценил минимальные размеры такого идеального кристаллита, которые составили 5–10 нанометров. Разрушить его практически невозможно, ведь в нем нет трещин и других дефектов – все они были “использованы” на предыдущих стадиях размола.Но мысль Ребиндера на этом не остановилась. Ведь если мы имеем идеально прочные строительные блоки, то почему бы не попытаться собрать из них новое твердое тело? По составу оно ничем не будет отличаться от тела, подвергнутого разрушению, но прочность его должна быть существенно выше. Это вытекает из следующего примера. Наполним ящик шариками. Как мы их ни перетряхивали, общее число контактов между ними останется постоянным. Но это число будет зависеть от диаметра шариков: чем диаметр меньше, тем больше шариков поместится в ящике и тем больше будет между ними контактов. Если принять, что прочность каждого контакта не зависит от диаметра шарика (а в реальности дело обстоит именно так), то окажется, что с уменьшением диаметра шариков общая прочность их сцепления возрастает.Таким образом, стратегия “прочность через разрушение” заключается в следующем: мы разрушаем некое твердое тело до минимально возможных частиц, затем максимально плотно заполняем ими заданный объем и дополнительно упрочняем контакты между частицами, например, за счет нагревания или специального клея. Это на бумаге. На практике все выглядит намного сложнее, но это работает. Давно и в промышленном масштабе.
А что мы имеем в наше время, в эпоху нанотехнологий?
Любая вводная лекция или научно-популярная книга по нанотехнологиям непременно включает описание методов получения наноразмерных объектов. Так как на шкале размеров эти объекты занимают промежуточное положение между атомами и макроскопическими телами, существует две наиболее общие стратегии их получения: мы можем собрать их из атомов (мысленно, конечно) или, наоборот, измельчить макроскопический объект. Образно эти стратегии называются “снизу-вверх” (bottom-up) и “сверху-вниз” (top-down).