Чтение онлайн

на главную

Жанры

Звезды: их рождение, жизнь и смерть
Шрифт:
(6.1)

Сделаем теперь оценку величины газового давления P в центральной части такой звезды, какой является наше Солнце. Подставив численное значение величин, стоящих в правой части этого уравнения, найдем, что P = 1016 дин/см2, или 10 миллиардов атмосфер! Это неслыханно большая величина. Самое высокое «стационарное» давление, достигаемое в земных лабораториях, порядка нескольких миллионов атмосфер [ 17 ] .

17

Заметим, однако, что при фокусировке мощного лазерного луча на мишень (которая, конечно, при этом мгновенно испарится) в течение 10 9

секунды может возникнуть давление отдачи на нее (обусловленное испаряющимися атомами), достигающее 10
12 атмосфер!

Из элементарного курса физики известно, что давление газа зависит от его плотности

и температуры T. Формула, связывающая все эти величины, носит название «формулы Клапейрона»: P =
T. С другой стороны, плотность в центральных областях «нормальных» звезд, конечно, больше, чем средняя плотность, но не существенно больше. В таком случае, из формулы Клапейрона непосредственно следует, что одна лишь большая плотность звездных недр сама по себе не в состоянии обеспечить достаточно высокое давление газа, чтобы выполнялось условие гидростатического равновесия. Необходимо прежде всего, чтобы температура газа была достаточно высока.

В формулу Клапейрона входит также средняя молекулярная масса

. Основным химическим элементом в атмосферах звезд является водород, и нет оснований полагать, что в недрах по крайней мере большинства звезд химический состав должен существенно отличаться от наблюдаемого в наружных слоях. В то же время, так как ожидаемая температура в центральных областях звезд должна быть достаточно велика, водород там должен быть почти полностью ионизован, т. е. «расщеплен» на протоны и электроны. Так как масса последних пренебрежимо мала по сравнению с протонами, а количество протонов равно количеству электронов, то средняя молекулярная масса этой смеси должна быть близка к 1/2. Тогда из уравнений (6.1) и формулы Клапейрона следует, что температура в центральных областях звезд по порядку величин равна

(6.2)

Величина

/
c может быть порядка 1/10. Она зависит от структуры звездных недр (см. § 12). Из формулы (6.2) следует, что температура в центральных областях Солнца должна быть порядка десяти миллионов кельвинов. Более точные расчеты отличаются от полученной нами сейчас оценки всего лишь на 20—30%. Итак, температура в центральных областях звезд исключительно велика — примерно в тысячу раз больше, чем на их поверхности. Теперь обсудим, каковы должны быть свойства вещества, нагретого до такой высокой температуры. Прежде всего такое вещество, несмотря на свою большую плотность, должно находиться в газообразном состоянии. Об этом речь уже шла выше. Но мы можем теперь уточнить это утверждение. При такой высокой температуре свойства газа в недрах звезд, несмотря на его высокую плотность, будут почти неотличимы от свойств идеального газа, т. е. такого газа, в котором взаимодействия между составляющими его частицами (атомами, электронами, ионами) сводятся к столкновениям. Именно для идеального газа справедлив закон Клапейрона, которым мы воспользовались при оценке температуры в центральных областях звезд.

При температуре порядка десяти миллионов кельвинов и при плотностях, которые там существуют, все атомы должны быть ионизованы. В самом деле, средняя кинетическая энергия каждой частицы газа

=
kT будет около 10– 9 эрг или
1000 эВ.

Это означает, что каждое столкновение электрона с атомом может привести к ионизации последнего, так как энергия связи электронов в атоме (так называемый «потенциал ионизации»), как правило, меньше тысячи электронвольт. Только самые «глубокие» электронные оболочки у тяжелых атомов останутся «нетронутыми», т. е. будут удержаны своими атомами. Состояние ионизации внутри-звездного вещества определяет его среднюю молекулярную массу, величина которой, как мы уже имели возможность убедиться, играет большую роль в недрах звезд. Если бы вещество звезды состояло только из полностью ионизованного водорода (как мы положили выше), то средняя молекулярная масса

, равнялась бы 1/2. Если бы там был только полностью ионизованный гелий, то
= 4/3 (так
как при ионизации одного атома гелия с атомной массой 4 образуются три частицы — ядро гелия плюс два электрона). Наконец, если бы вещество недр звезды состояло только из тяжелых элементов (кислорода, углерода, железа и пр.), то средняя молекулярная масса его при полной ионизации всех атомов была бы близка к 2, так как для таких элементов атомная масса приблизительно вдвое больше, чем число электронов в атоме.

В действительности вещество звездных недр представляет собой некоторую смесь водорода, гелия и тяжелых элементов. Относительное содержание этих основных компонент звездного вещества (не по числу атомов, а по массе) обычно обозначается через буквы X, Y и Z, которые характеризуют химический состав звезды. У типичных звезд, более или менее сходных с Солнцем, X = 0,73, Y = 0,25, Z = 0,02. Отношение Y/X

,3 означает, что на каждые 10 атомов водорода приходится приблизительно один атом гелия. Относительное количество тяжелых элементов весьма мало. Например, атомов кислорода примерно в тысячу раз меньше, чем водорода. Тем не менее роль тяжелых элементов в структуре внутренних областей звезд довольно значительна, так как они сильно влияют на непрозрачность звездного вещества. Среднюю молекулярную массу звезды мы можем теперь определить простой формулой:

(6.3)

Роль Z в оценке

незначительна. Решающее значение для величины средней молекулярной массы имеют X и Y . Для звезд центральной части главной последовательности (в частности, для Солнца)
= 0,6. Так как величина
для большинства звезд меняется в очень незначительных пределах, мы можем написать простую формулу для центральных температур различных звезд, выразив их массы и радиусы в долях солнечной массы M
и солнечного радиуса R
:

(6.4)

где T

 — температура центральных областей Солнца. Выше, мы грубо оценили T
в 10 миллионов кельвинов. Точные вычисления дают значение T
= 14 миллионов кельвинов. Из формулы (6.4) следует, например, что температура недр массивных горячих (на поверхности!) звезд спектрального класса В раза в 2—3 выше температуры солнечных недр, в то время как у красных карликов центральные температуры раза в 2—3 ниже солнечных.

Существенно, что температура

107 К характерна не только для самых центральных областей звезд, но и для окружающего центр звезды большого объема. Учитывая, что плотность звездного вещества растет по направлению к центру, мы можем сделать вывод, что основная часть массы звезды имеет температуру, во всяком случае превышающую
5 миллионов кельвинов. Если мы еще вспомним, что большая часть массы Вселенной заключена в звездах, то напрашивается вывод, что вещество Вселенной, как правило, горячее и плотное. Следует, однако, к этому добавить, что речь идет о современной Вселенной: в далеком прошлом и будущем состояние вещества Вселенной было и будет совсем другим. Об этом речь шла во введении к этой книге.

Глава 7 Как излучают звезды?

При температуре порядка десяти миллионов кельвинов и достаточно высокой плотности вещества недра звезды должны быть «наполнены» огромным количеством излучения. Кванты этого излучения непрерывно взаимодействуют с веществом, поглощаясь и переизлучаясь им. В результате таких процессов поле излучения приобретает равновесный характер (строго говоря, почти равновесный характер — см. ниже), т. е. оно описывается известной формулой Планка с параметром T, равным температуре среды. Например, плотность излучения на частоте

в единичном интервале частот равна

Поделиться:
Популярные книги

Меняя маски

Метельский Николай Александрович
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
9.22
рейтинг книги
Меняя маски

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь