Чтение онлайн

на главную - закладки

Жанры

Звезды: их рождение, жизнь и смерть
Шрифт:
(7.1)

в то время как полная плотность излучения задается известным законом Стефана — Больцмана

(7.2)

Важной характеристикой поля излучения является его интенсивность, обычно обозначаемая символом I

. Последняя определяется как количество энергии, протекающее через площадку в один квадратный сантиметр в единичном интервале частот за одну секунду внутри телесного угла в один стерадиан в некотором заданном направлении, причем площадка перпендикулярна к этому направлению. Если для всех направлений величина интенсивности одинакова, то она связана с плотностью излучения простым соотношением

(7.3)

Аналогично, полная интенсивность I связана с плотностью излучения и выражением

(7.4)

Наконец,

особое значение для проблемы внутреннего строения звезд имеет поток излучения, обозначаемый буквой H. Мы можем определить эту важную величину через полное количество энергии, протекающей наружу через некоторую воображаемую сферу, окружающую центр звезды:

(7.5)

Если энергия «производится» только в самых внутренних областях звезды, то величина L остается постоянной, т. е. не зависит от произвольно выбранного радиуса r. Полагая r = R, т. е. радиусу звезды, мы найдем смысл L: очевидно, это просто светимость звезды. Что же касается величины потока H, то она меняется с глубиной как r– 2.

Если бы интенсивность излучения по всем направлениям была строго одинакова (т. е., как говорят, поле излучения было бы изотропным), то поток H был бы равен нулю [ 18 ] . Это легко понять, если представить, что в изотропном поле количество излучения, вытекающее через сферу произвольного радиуса наружу, равно количеству втекающей внутрь этой воображаемой сферы энергии. В условиях звездных недр поле излучения почти изотропно. Это означает, что величина I подавляюще превосходит H. В этом мы можем убедиться непосредственно. Согласно (7.2) и (7.4) при T = 107 К I = 1023 эрг/см2

с
стер, а количество излучения, протекающее в каком-нибудь одном направлении («вверх» или «вниз»), будет несколько больше: F =
I = 3
1023 эрг/см2
с. Между тем величина потока излучения Солнца в его центральной части,. где-нибудь на расстоянии
100 000 км от его центра (это в семь раз меньше солнечного радиуса), будет равна H = L/4
r2 = 4
1033/1021 = 4
1012 эрг/см2
с, т.е. в тысячу миллиардов раз меньше. Это объясняется тем, что в солнечных недрах поток излучения наружу («вверх») почти в точности равен потоку внутрь («вниз»). Все дело в этом «почти». Ничтожная разница в интенсивности поля излучения и определяет всю картину излучения звезды. Именно по этой причине мы сделали выше оговорку, что поле излучения почти равновесно. При строго равновесном поле излучения никакого потока излучения не должно быть! Еще раз подчеркнем, что отклонения реального поля излучения в недрах звезд от планковского совершенно ничтожны, что видно из малости отношения H/F
10– 12.

18

Именно по этой причине поток реликтового излучения Вселенной (как это ни парадоксально) почти равен нулю. «Почти» потому, что могут быть незначительные отклонения от строгой изотропии.

При T

107 К максимум энергии в планковском спектре приходится на рентгеновский диапазон. Это следует из хорошо известного из элементарной теории излучения закона Вина:

(7.6)

где

m — длина волны, на которую приходится максимум функции Планка. При T = 107 К
m = 3
10– 8 см или 3A — типичный рентгеновский диапазон. Количество лучистой энергии, заключенной в недрах Солнца (или какой-нибудь другой звезды), сильно зависит от распределения температуры с глубиной, так как u
T4. Точная теория звездных недр позволяет получить такую зависимость, откуда следует, что у нашего светила запас лучистой энергии около 1045 эрг. Если бы ничто не сдерживало кванты этого жесткого излучения, они за пару секунд покинули бы Солнце и эта чудовищная вспышка, несомненно, сожгла бы все живое на поверхности Земли. Это не происходит потому, что излучение буквально «заперто» внутри Солнца. Огромная толща вещества Солнца служит надежным «буфером». Кванты излучения, непрерывно и очень часто поглощаясь атомами, ионами и электронами плазмы солнечного вещества, лишь чрезвычайно медленно «просачиваются» наружу. В процессе такой «диффузии» они существенно меняют свое основное качество — энергию. Если в недрах звезд, как мы видели, их энергия соответствует
рентгеновскому диапазону, то с поверхности звезды кванты выходят уже сильно «отощавшими» — их энергия уже соответствует преимущественно оптическому диапазону.

Возникает основной вопрос: чем определяется светимость звезды, т. е. мощность ее излучения? Почему звезда, имеющая огромные ресурсы энергии, так «экономно» расходует их, теряя из этого «запаса» на излучение лишь малую, хотя и вполне определенную часть? Выше мы оценили запас лучистой энергии в недрах звезд. Следует иметь в виду, что эта энергия, взаимодействуя с веществом, непрерывно поглощается и в таком же количестве возобновляется. «Резервуаром» для «наличной» лучистой энергии в недрах звезд служит тепловая энергия частиц вещества. Не представляет особого труда оценить величину тепловой энергии, запасенной в звезде. Для определенности рассмотрим Солнце. Считая, для простоты, что оно состоит только из водорода, и зная его массу, легко найти, что там имеется приблизительно 2

1057 частиц — протонов и электронов. При температуре T
107 К средняя энергия, приходящаяся на одну частицу, будет равна
kT = 2
10– 9 эрг, откуда следует, что запас тепловой энергии Солнца WT составляет весьма солидную величину
4
1048 эрг. При наблюдаемой мощности солнечного излучения L
= 4
1033 эрг/с этого запаса хватает на 1015 секунд или
30 миллионов лет. Вопрос состоит в том, почему Солнце имеет именно ту светимость, которую мы наблюдаем? Или, другими словами, почему находящийся в состоянии гидростатического равновесия газовый шар с массой, равной массе Солнца, имеет совершенно определенный радиус и совершенно определенную температуру поверхности, с которой излучение выходит наружу? Ибо светимость любой звезды, в том числе и Солнца, можно представить простым выражением

(7.7)

где Te — температура солнечной поверхности [ 19 ] . Ведь, в принципе, Солнце при тех же массе и радиусе могло бы иметь температуру, скажем, 20 000 К, и тогда его светимость была бы в сотни раз больше. Однако этого нет, что, конечно, не является случайностью.

Выше мы говорили о запасе тепловой энергии в звезде. Наряду с тепловой энергией звезда располагает также солидным запасом других видов энергии. Прежде всего рассмотрим гравитационную энергию. Последняя определяется как энергия гравитационного притяжения всех частиц звезды между собой. Она, конечно, является потенциальной энергией звезды и имеет знак минус. Численно она равна работе, которую нужно затратить, чтобы, преодолевая силу тяготения, «растащить» все части звезды на бесконечно большое расстояние от ее центра. Оценку величины этой энергии можно сделать, если найти энергию гравитационного взаимодействия звезды с самой собой:

19

Так как излучение выходит наружу из слоев звездной атмосферы с несколько разной глубиной, температуры которых немного отличаются, T e имеет смысл «эффективной температуры».

(7.8)

Точный расчет с использованием простых методов высшей математики дает примерно вдвое большее значение, причем строго выполняется соотношение, известное в механике как «теорема о вириале»:

(7.9)

Рассмотрим теперь звезду не в равновесном, стационарном состоянии, а в стадии медленного сжатия (как это имеет место для протозвезды; см. § 5). В процессе сжатия гравитационная энергия звезды медленно уменьшается (вспомним, что она отрицательна). Однако, как это видно из формулы (7.9), только половина выделившейся гравитационной энергии перейдет в тепло, т. е. будет затрачена на нагрев вещества. Другая половина выделившейся энергии обязательно должна покинуть звезду в виде излучения. Отсюда следует, что если источником энергии излучения звезды является ее сжатие, то количество излученной за время эволюции энергии равно запасу ее тепловой энергии.

Оставляя пока в стороне очень важный вопрос о причинах, по которым звезда имеет совершенно определенную светимость, сразу же подчеркнем, что если считать источником энергии звезды освобождение ее гравитационной энергии в процессе сжатия (как это полагали в конце XIX века), то мы столкнемся с очень серьезными трудностями. Дело не в том, что для обеспечения наблюдаемой светимости радиус Солнца ежегодно должен уменьшаться примерно на 20 метров — такое ничтожное изменение размеров Солнца современная техника наблюдательной астрономии обнаружить не в состоянии. Трудность в том, что запаса гравитационной энергии Солнца хватило бы лишь на 30 миллионов лет излучения нашего светила при условии, конечно, что оно излучало в прошлом примерно так же, как сейчас. Если в XIX веке, когда известный английский физик Томпсон (лорд Кельвин) выдвинул эту «гравитационную» гипотезу поддержания солнечного излучения, знания о возрасте Земли и Солнца были весьма туманными, то сейчас это уже не так. Геологические данные с большой надежностью позволяют утверждать, что возраст Солнца исчисляется по крайней мере в несколько миллиардов лет, что в сотню раз превышает «кельвинскую шкалу» для его жизни.

Отсюда следует очень важный вывод, что ни тепловая, ни гравитационная энергия не могут обеспечить столь длительное излучение Солнца, а также подавляющего большинства других звезд. Наш век уже давно указал на третий источник энергии излучения Солнца и звезд, имеющий решающее значение для всей нашей проблемы. Речь идет о ядерной энергии (см. § 3). В § 8 мы более подробно и конкретно будем говорить о тех ядерных реакциях, которые протекают в звездных недрах.

Величина запаса ядерной энергии Wя = 0,008Xc2M

1052 эрг превышает сумму гравитационной и тепловой энергии Солнца более чем в 1000 раз. То же самое относится и к подавляющему большинству других звезд. Этого запаса хватит для поддержания излучения Солнца на сто миллиардов лет! Конечно, отсюда не следует, то Солнце будет излучать в течение столь огромного промежутка времени на современном уровне. Но во всяком случае ясно, что запасов ядерного горючего у Солнца и звезд более чем достаточно.

Поделиться:
Популярные книги

Последний попаданец 8

Зубов Константин
8. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 8

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Странник

Седой Василий
4. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Странник

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V