Звезды: их рождение, жизнь и смерть
Шрифт:
Набросанный сейчас «сценарий» образования звезд (см. рис. 5.3) позволяет сделать следующие, важные для наблюдательной астрономии выводы:
a. На самой ранней фазе «свободного падения» (для звезд класса О
b. В течение следующих
c. После того как протозвезда превратилась в звезду, т. е. «села» на главную последовательность, образуется расширяющаяся компактная H II область, окруженная внешним, сравнительно холодным «коконом». Эта фаза также длится около 104 лет.
d. Последняя фаза — следы компактной Н II области (уже «выевшей» внешний «кокон»), окруженной протяженной областью сравнительно малой яркости, длится до миллиона лет.
Хотя положенная в основу расчетов модель, как уже подчеркивалось выше, весьма схематична, основные черты эволюции протозвездных облаков и звезды она, по-видимому, отражает верно, что доказывается ее хорошим согласием с большим количеством наблюдений, выполненных в последнее время, в частности, под руководством Мецгера в Бонне. Следует также не забывать, что расчеты, результаты которых рассматривались выше, относятся к весьма массивным протозвездным
В какой степени астрономические наблюдения подтверждают набросанный выше сценарий эволюции протозвездного облака? Прежде всего, требует наблюдательного подтверждения основная картина образования групп звезд в темных молекулярных облаках межзвездной среды. Генетическая связь зон Н II (окружающих молодые горячие массивные звезды) и темных молекулярных облаков известна уже давно: достаточно взглянуть на фотографии диффузных туманностей с включенными в них темными пятнами и другими протяженными деталями (см., например, рис. 2.2—2.3). Новейшие наблюдения существенно дополняют эту картину. Так, например, почти от всех зон H II обнаружено излучение в молекулярной линии СО
Это означает, что там имеется холодный молекулярный газ, являющийся «реликтом» первичного газово-пылевого облака, из которого образовались массивные горячие звезды и «порожденные» ими зоны Н II. В случае, если протозвезды закрыты плотным непрозрачным «коконом», последний переизлучает в инфракрасные кванты все поглощенное протозвездное излучение. Следовательно, измерив мощность инфракрасного источника, можно определить светимость находящейся внутри него невидимой из-за поглощения протозвезды. В ряде случаев мощность компактных инфракрасных источников достигает десятков и сотен тысяч солнечных светимостей, что указывает на наличие массивной протозвезды, которая превратится в звезду спектрального класса О. Следует подчеркнуть, что ассоциации компактных областей H II (представляющих, как было показано выше, более позднюю фазу развития протозвездных оболочек) и инфракрасных источников наблюдаются довольно часто.
Новейшие радиоастрономические исследования в этой области. широко используют наблюдения молекулярной радиолинии СО. В областях HII часто наблюдаются компактные области, в которых интенсивность этой линии повышена. Там находятся, следовательно, плотные конденсации холодного молекулярного газа, окруженные разреженной, горячей средой. Такие конденсации с массой порядка нескольких сотен M
Так как время гравитационного сжатия массивных протозвезд сравнительно невелико, следует ожидать, что около них имеются остатки газово-пылевого облака, из которого они образовались. Речь идет о «протозвездных оболочках», рассмотренных теоретически выше. В случае, когда звезды классов А и В имеют в своих спектрах наряду с линиями поглощения также линии излучения (класс таких звезд обозначается Ae и Be), можно подозревать, что они являются звездами типа Т Тельца (см. ниже), т. е. протозвездами. И вот, оказывается, что в большинстве случаев такие звезды окружены компактными молекулярными облаками, в которых усилена радиолиния СО
|
Рис. 5.4: Кривые поглощения света темным облаком в созвездии Змееносца. |
|
Рис. 5.5: Область темной туманности в созвездии Змееносца в большем масштабе. |
В ряде случаев современная астрономия имеет прямые доказательства того, что внутри плотных, холодных непрозрачных для видимых лучей облаков межзвездного газа содержится скопление очень молодых звезд или протозвезд. Хорошим примером является известное газово-пылевое облако в созвездии Змееносца, находящееся на расстоянии 160 пс от Солнца. В этом темном облаке в инфракрасных лучах (длина волны 2,2 мкм) в области с линейными размерами
Остановимся теперь на наблюдательных данных, касающихся гигантских газово-пылевых комплексов, где, как можно ожидать, процесс образования звезд из диффузной межзвездной среды идет особенно интенсивно. Интерпретация обширных рядов относящихся сюда радиоастрономических и инфракрасных наблюдений была выполнена главным образом западногерманскими астрономами под руководством проф. Мецгера. Оказывается, что процесс звездообразования происходит несколько различно в газово-пылевых комплексах, находящихся в спиральных рукавах (см. рис. 5.6) и между ними. Основное различие состоит в том, что в первом случае процесс звездообразования происходит практически одновременно, между тем как во втором он может растянуться на много миллионов лет. Это различие можно объяснить разными условиями в прохождении «волны сжатия», стимулирующей конденсацию облаков межзвездной среды в связи с гравитационной неустойчивостью (см. § 3). Если газово-пылевой комплекс находится в рукаве, сжатие газа в его различных частях происходит почти одновременно, между тем как в изолированных комплексах, находящихся между облаками, волне сжатия требуется много миллионов лет, чтобы пройти через весь комплекс.
Рассмотрим теперь несколько более подробно условия в ближайшем к нам «изолированном» газово-пылевом комплексе, находящемся в созвездии Ориона. Часть этого комплекса давно известна: это знаменитая туманность Ориона (см. рис. 2.3). В этом комплексе можно наблюдать молодые звезды на разных стадиях их эволюции («О—В ассоциация» Ориона), компактные H II области, а также протозвезды, находящиеся в плотном непрозрачном облаке холодного газа. На рис. 5.7 приведено распределение яркости в радиолинии 13СО. Это холодное облако видимым образом «разрывает» туманность Ориона (см. рис. 2.3) на две части. Плотность молекулярного газа в облаке очень велика (
|
Рис. 5.6: Распределение газово-пылевых комплексов в Галактике. |
К югу и к северу от молекулярного облака находятся яркие компактные области Н II. В области двух максимумов яркости линии СО, соответствующих самым плотным частям молекулярного облака (nH2