Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

model.summary

```

Пояснение архитектуры и процесса:

1. Сверточные слои (Convolutional layers): В приведенном примере используются несколько сверточных слоев (`Conv2D`) с функцией активации `relu`, которые извлекают признаки из изображений. Каждый слой `Conv2D` сопровождается слоем `MaxPooling2D`, который уменьшает размерность данных, сохраняя важные признаки.

2. Преобразование в одномерный вектор (Flatten): После извлечения признаков из последнего сверточного слоя, данные преобразуются в одномерный

вектор для подачи на полносвязные слои.

3. Полносвязные слои (Dense layers): После преобразования вектора признаков модель проходит через несколько полносвязных слоев (`Dense`), которые выполняют классификацию объектов. В последнем слое используется функция активации `softmax`, которая выдает вероятности принадлежности объекта к каждому из классов.

4. Компиляция и обучение модели: Модель компилируется с оптимизатором `adam` и функцией потерь `categorical_crossentropy`, которая подходит для многоклассовой классификации.

Преимущества использования CNN для распознавания объектов на изображениях

– Изучение пространственных иерархий признаков: CNN способны автоматически извлекать важные пространственные признаки из изображений, такие как грани, текстуры и формы, что делает их идеальными для задач распознавания объектов.

– Способность к масштабированию: Модели на основе CNN могут быть масштабированы для работы с различными размерами изображений и разнообразными задачами классификации.

– Производительность: Правильно настроенные модели CNN демонстрируют высокую точность распознавания объектов на изображениях, что делает их особенно полезными для приложений компьютерного зрения.

Таким образом, построение нейронной сети на основе CNN для распознавания объектов на изображениях представляет собой эффективный подход к решению задач компьютерного зрения, который может быть адаптирован для различных доменов и типов данных изображений.

23. Создание модели для определения пола и возраста по фотографии

– Задача: Анализ изображений лиц для определения пола и возраста.

Для решения задачи определения пола и возраста по фотографии лица можно использовать комбинацию глубоких сверточных нейронных сетей (CNN) и подходов, основанных на передаче обучения (transfer learning). Давайте рассмотрим основные шаги и архитектуру модели для такой задачи.

Построение модели для определения пола и возраста по фотографии

1. Подготовка данных

Процесс подготовки данных для анализа изображений лиц включает:

– Загрузку набора данных изображений лиц с разметкой пола и возраста.

– Предобработку изображений (масштабирование, нормализация и аугментация данных).

– Разделение данных на обучающую и тестовую выборки.

2. Построение модели с использованием CNN

Пример архитектуры модели с использованием CNN и transfer learning:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from tensorflow.keras.applications import MobileNetV2

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam

#

Параметры модели и обучения

input_shape = (224, 224, 3) # размер входного изображения (ширина, высота, каналы RGB)

num_classes_gender = 2 # два класса для пола (мужчина, женщина)

num_classes_age = 8 # возрастные группы (например, 0-10, 11-20 и т.д.)

# Загрузка предварительно обученной модели (MobileNetV2 без полносвязных слоев)

base_model = MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet')

# Замораживаем веса предварительно обученной модели

base_model.trainable = False

# Создание модели на основе MobileNetV2 и добавление своих слоев

model = Sequential

model.add(base_model)

model.add(Conv2D(32, (3, 3), activation='relu'))

model.add(MaxPooling2D((2, 2)))

model.add(Flatten)

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

# Для определения пола (бинарная классификация)

model.add(Dense(num_classes_gender, activation='softmax', name='gender_output'))

# Для определения возраста (многоклассовая классификация)

model.add(Dense(num_classes_age, activation='softmax', name='age_output'))

# Компиляция модели

model.compile(optimizer=Adam(lr=0.0001), loss={'gender_output': 'binary_crossentropy', 'age_output': 'categorical_crossentropy'}, metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

```

Пояснение архитектуры и процесса:

1. Предварительно обученная модель (Transfer Learning): В примере используется MobileNetV2, предварительно обученная на большом наборе данных ImageNet. Мы загружаем модель без полносвязных слоев (`include_top=False`) и замораживаем её веса, чтобы сохранить обучение, полученное на ImageNet.

2. Добавление собственных слоев: К предварительно обученной модели добавляются дополнительные сверточные (`Conv2D`) и полносвязные (`Dense`) слои. Эти слои помогают извлечь признаки из изображений и выполнить классификацию по полу и возрасту.

3. Функции активации: Для определения пола используется `softmax` с двумя выходами (мужчина и женщина), а для определения возраста также `softmax` с несколькими выходами (например, группы возрастов).

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функциями потерь `binary_crossentropy` для пола и `categorical_crossentropy` для возраста, соответствующими задачам классификации.

Поделиться:
Популярные книги

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Сонный лекарь 7

Голд Джон
7. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 7

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Огни Эйнара. Долгожданная

Макушева Магда
1. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Эйнара. Долгожданная

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3