Чтение онлайн

на главную

Жанры

120 практических задач
Шрифт:

from tensorflow.keras.layers import Conv2D, Reshape

from tensorflow.keras.models import Model

# Загрузка предварительно обученной модели MobileNetV2 без полносвязных слоев

base_model = MobileNetV2(input_shape=(224, 224, 3), include_top=False, weights='imagenet')

# Замораживаем веса предварительно обученной модели

base_model.trainable = False

# Добавляем дополнительные слои для детекции лиц

x = base_model.output

x = Conv2D(256, (3, 3), activation='relu', padding='same')(x)

x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)

predictions = Conv2D(4, (3, 3), activation='sigmoid', name='face_detection')(x) # 4

координаты bounding box'а

# Компилируем модель

model = Model(inputs=base_model.input, outputs=predictions)

# Вывод архитектуры модели

model.summary

```

2. Отслеживание лиц в видео

После обнаружения лиц на каждом кадре видео необходимо отслеживать эти лица в последующих кадрах. Для этого можно использовать алгоритмы отслеживания объектов, такие как Kalman Filter или SORT (Simple Online and Realtime Tracking). В данном примере рассмотрим использование SORT для отслеживания лиц.

Пример использования SORT для отслеживания лиц:

```python

from sort import Sort # pip install sort

tracker = Sort

# Пример получения bounding box'ов из модели детекции лиц

frames = [] # список кадров видео

# Для каждого кадра:

# Получаем bounding box'ы с помощью модели детекции лиц

# Передаём bounding box'ы в SORT для отслеживания

detections = model.predict(frame)

tracked_objects = tracker.update(detections)

# Отрисовываем tracked_objects на кадре видео

```

Пояснение архитектуры и процесса:

1. Детектор лиц на основе CNN: В примере используется MobileNetV2 как базовая модель без полносвязных слоев. Мы добавляем несколько свёрточных слоёв для улучшения точности детекции лиц. Финальный слой используется для предсказания bounding box'ов лиц на изображении.

2. Отслеживание лиц в видео: После детекции лиц на каждом кадре видео используется алгоритм отслеживания SORT для непрерывного отслеживания этих лиц на последующих кадрах. SORT осуществляет ассоциацию и отслеживание объектов на основе истории и предсказаний.

Преимущества использования такой модели

– Высокая точность детекции: Использование глубоких свёрточных сетей позволяет добиться высокой точности при детекции лиц в видео.

– Работа в реальном времени: Модели типа SSD или YOLO позволяют обрабатывать кадры видео в реальном времени, что важно для задач видеонаблюдения и аналитики.

– Непрерывное отслеживание: Алгоритмы отслеживания объектов, такие как SORT, обеспечивают непрерывное отслеживание лиц на протяжении видео, что полезно для задач видеоаналитики.

Таким образом, построение модели для обнаружения и отслеживания лиц в видео с использованием глубоких нейронных сетей и алгоритмов отслеживания представляет собой эффективный подход к решению задачи видеоаналитики и безопасности.

27. Создание нейронной сети для оценки стоимости недвижимости

– Задача: Прогнозирование цен на недвижимость на основе различных факторов.

Для создания нейронной сети для оценки стоимости недвижимости на основе различных факторов, таких как размер дома, количество комнат, расположение и другие характеристики, можно применить подходы глубокого обучения, специально адаптированные для задач регрессии. Давайте рассмотрим основные шаги и пример архитектуры модели.

Построение нейронной сети для оценки стоимости недвижимости

1. Подготовка данных

Первый шаг включает подготовку данных:

– Загрузка и очистка данных о недвижимости, включая характеристики домов (площадь, количество комнат, этажность и т.д.) и цены.

– Масштабирование признаков для улучшения сходимости обучения нейронной сети (например, стандартизация или нормализация).

2. Построение модели нейронной сети

Пример архитектуры модели для оценки стоимости недвижимости с использованием TensorFlow/Keras:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

import numpy as np

# Пример данных (данные нужно подставить под ваши)

# X – признаки (характеристики домов)

# y – цены на недвижимость

X = np.random.random((1000, 10)) # пример матрицы признаков

y = np.random.random((1000, 1)) # пример вектора цен

# Масштабирование данных

scaler = StandardScaler

X_scaled = scaler.fit_transform(X)

y_scaled = scaler.fit_transform(y)

# Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.2, random_state=42)

# Параметры модели и обучения

input_dim = X.shape[1] # количество признаков

hidden_units = 64 # количество нейронов в скрытом слое

dropout_rate = 0.2 # коэффициент отсева для предотвращения переобучения

# Создание модели

model = Sequential

# Добавление слоев

model.add(Dense(hidden_units, input_dim=input_dim, activation='relu'))

model.add(Dropout(dropout_rate))

model.add(Dense(hidden_units, activation='relu'))

model.add(Dense(1)) # выходной слой для предсказания цены

# Компиляция модели

model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae']) # метрика – средняя абсолютная ошибка

Поделиться:
Популярные книги

Студент

Гуров Валерий Александрович
1. Студент
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Студент

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V