Чтение онлайн

на главную - закладки

Жанры

120 практических задач
Шрифт:

30. Построение нейронной сети для генерации реалистичных ландшафтов

– Задача: Генерация изображений ландшафтов с использованием GAN.

Теория генеративно-состязательных сетей (GAN)

Генеративно-состязательные сети (GAN), предложенные Ианом Гудфеллоу в 2014 году, представляют собой мощный метод глубокого обучения, используемый для генерации новых данных на основе имеющихся. GAN состоят из двух нейронных сетей: **генератора**

и **дискриминатора**, которые обучаются одновременно, соревнуясь друг с другом в процессе, известном как «состязательное обучение».

Генератор создает новые данные из случайного шума. Его задача – генерировать данные, которые настолько реалистичны, что дискриминатор не сможет отличить их от настоящих. Генератор берет на вход вектор случайного шума и преобразует его в изображение (или другой тип данных). Он обучается, получая обратную связь от дискриминатора, который указывает, насколько реалистичны сгенерированные данные.

Дискриминатор действует как классификатор, обучаясь отличать реальные данные от сгенерированных. Он принимает на вход как реальные, так и сгенерированные данные и пытается правильно их классифицировать. Обучение дискриминатора направлено на максимизацию вероятности правильной классификации реальных данных и минимизацию вероятности ошибки на сгенерированных данных.

Процесс обучения GAN можно описать как игру с нулевой суммой, где генератор пытается обмануть дискриминатор, а дискриминатор стремится не дать себя обмануть. Цель генератора – минимизировать свою ошибку, а дискриминатора – максимизировать свою точность.

Применение GAN для генерации ландшафтов

Применение GAN для генерации реалистичных ландшафтов включает несколько этапов. Начинается все с подготовки большого набора данных изображений ландшафтов, которые будут использованы для обучения. Эти изображения необходимо нормализовать и преобразовать в формат, пригодный для подачи в нейронные сети.

Далее создаются архитектуры генератора и дискриминатора. Генератор обычно состоит из нескольких полносвязных слоев, за которыми следуют слои развёртки и нормализации, чтобы постепенно преобразовывать случайный вектор в изображение. Дискриминатор, напротив, состоит из свёрточных слоев, которые уменьшают размер изображения и извлекают признаки для классификации.

Обучение GAN требует тщательной настройки гиперпараметров и контроля за балансом между генератором и дискриминатором. Если один из них обучается быстрее другого, это может привести к нестабильности. В процессе обучения модели на каждом этапе оцениваются метрики потерь генератора и дискриминатора, что позволяет следить за прогрессом и при необходимости корректировать параметры.

В конечном итоге, обученная GAN может генерировать новые, ранее невиданные изображения ландшафтов, которые визуально могут быть неотличимы от реальных фотографий. Эти изображения могут быть использованы в различных приложениях, от компьютерных игр и виртуальной

реальности до фильмов и дизайна.

Создание нейронной сети для генерации реалистичных ландшафтов с использованием генеративно-состязательной сети (GAN) включает несколько этапов. Рассмотрим план:

1. Подготовка данных

2. Построение модели GAN

3. Обучение модели

4. Генерация изображений

1. Подготовка данных

Для начала нужно собрать и подготовить набор данных с изображениями ландшафтов. Используем набор данных, например, с сайта Kaggle, или загружаем собственные изображения.

```python

import os

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

from sklearn.model_selection import train_test_split

# Пусть 'landscapes' – это директория с изображениями

image_dir = 'path_to_landscape_images'

image_size = (128, 128) # Размер изображения для нейронной сети

def load_images(image_dir, image_size):

images = []

for filename in os.listdir(image_dir):

if filename.endswith(".jpg") or filename.endswith(".png"):

img_path = os.path.join(image_dir, filename)

img = Image.open(img_path).resize(image_size)

img = np.array(img)

images.append(img)

return np.array(images)

images = load_images(image_dir, image_size)

images = (images – 127.5) / 127.5 # Нормализация изображений в диапазон [-1, 1]

train_images, test_images = train_test_split(images, test_size=0.2)

```

2. Построение модели GAN

Генеративно-состязательная сеть состоит из двух частей: генератора и дискриминатора.

```python

import tensorflow as tf

from tensorflow.keras import layers

# Генератор

def build_generator:

model = tf.keras.Sequential

model.add(layers.Dense(256, activation='relu', input_shape=(100,)))

model.add(layers.BatchNormalization)

model.add(layers.Dense(512, activation='relu'))

model.add(layers.BatchNormalization)

model.add(layers.Dense(1024, activation='relu'))

model.add(layers.BatchNormalization)

model.add(layers.Dense(np.prod(image_size) * 3, activation='tanh'))

model.add(layers.Reshape((image_size[0], image_size[1], 3)))

return model

# Дискриминатор

def build_discriminator:

model = tf.keras.Sequential

model.add(layers.Flatten(input_shape=image_size + (3,)))

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(256, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

return model

# Сборка модели GAN

generator = build_generator

discriminator = build_discriminator

discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

gan_input = layers.Input(shape=(100,))

generated_image = generator(gan_input)

discriminator.trainable = False

Поделиться:
Популярные книги

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Назад в СССР: 1984

Гаусс Максим
1. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
4.80
рейтинг книги
Назад в СССР: 1984

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Раб и солдат

Greko
1. Штык и кинжал
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Раб и солдат