Чтение онлайн

на главную - закладки

Жанры

Бабочка и ураган. Теория хаоса и глобальное потепление
Шрифт:

Говоря об американской математической школе, нельзя обойти вниманием фигуру Стивена Смэйла (род. 1930), удостоенного в 1966 году Филдсовской премии за вклад в теорию динамических систем. Смэйл находился под влиянием сразу трех наиболее важных традиций изучения динамических систем и хаоса, а именно: забытой традиции, начатой Пуанкаре, к которой принадлежал Биркхоф; русской математической школы, объединившейся с английской усилиями Соломона Лефшеца во время холодной войны, и, наконец, традиции аналитико-топологического изучения дифференциальных уравнений, начатой Мэри Люси Картрайт (1900–1998) и Джоном Идензором Литлвудом (1883–1977) в Великобритании на основе трудов Ван дер Поля.

Бальтазар

Ван дер Поль
(1889–1959) был голландским инженером-электронщиком, который в «золотые двадцатые» обнаружил предельный цикл (об этом понятии мы уже говорили в первой главе) в нелинейном дифференциальном уравнении, которое описывало поведение электронных ламп, имевших огромное значение в сфере телекоммуникаций. Это уравнение имело траекторию-решение в форме замкнутой кривой, которая притягивала к себе все ближайшие траектории. В 1945 году, когда союзники вовсю работали над созданием радара, Картрайт и Литлвуд доказали, что в окрестностях этого предельного цикла наблюдалось сложное непериодическое движение — это был хаос!

Несколько позже, в 1950-е, специалист по топологии Стивен Смэйл продолжил качественный анализ динамических систем в поисках теоремы, аналогичной теореме Пуанкаре — Бендиксона, для трехмерного пространства, однако его работы не увенчались успехом. Подобная теорема не сформулирована до сих пор, так как траектории в пространстве могут переплетаться, что крайне усложняет динамику. Существуют трехмерные динамические системы, в которых, помимо центров, фокусов, узлов, седел и предельных циклов, наблюдаются странные аттракторы.

К несчастью для Смэйла, хаос существовал.

Странный аттрактор Рёсслера (1976). Подобно ленте Мёбиуса, он имеет только одну сторону, хотя кажется, что у него две стороны: достаточно проследовать вдоль внешней границы, чтобы увидеть, как она постепенно переходит во внутреннюю.

Изначально Смэйл считал, что почти все (или все) трехмерные динамические системы обладают не слишком странным поведением — почти таким же, как и двухмерные динамические системы на плоскости, все возможные аттракторы которых принадлежали конечному множеству фокусов и предельных циклов. Интерес Смэйла к аттракторам был вызван тем, что они описывали поведение динамической системы в долгосрочном периоде. Эти точки указывали, какими будут системы в далеком будущем, поскольку они испытывают фатальное притяжение к аттракторам, расположенным бесконечно далеко. Смэйл полагал, что единственными видами движения, корректными в долгосрочном периоде, были либо пребывание в состоянии покоя, либо равновесие в стационарном состоянии (в фокусе), либо периодическое повторение некой последовательности движений. Иными словами, система могла либо оставаться неподвижной, либо снова и снова совершать определенные движения. В долгосрочном периоде траекториями системы были точки либо окружности.

Каким же было удивление ученого, когда он, отдыхая на пляжах Рио-де-Жанейро, получил письмо с контрпримером к своей гипотезе. Норман Левинсон, коллега Смэйла из Массачусетского технологического института (MIT), описал динамическую систему, порождавшую нелинейный осциллятор Ван дер Поля, изученный Картрайт и Литлвудом. Эта система имела бесконечное множество периодических орбит и, что еще хуже, в долгосрочном периоде демонстрировала в высшей степени странное поведение: в теории была возможна ситуация, при которой система в будущем не будет оставаться неподвижной и не будет совершать определенные движения снова и снова, а продолжит двигаться совершенно беспорядочным образом. Рассмотрев аналитические работы Левинсона с геометрической точки зрения, Смэйл в 1959 году описал соленоид Смэйла (названный так за внешнее сходство с соленоидом — электромагнитом, состоящим из металлического сердечника, на который намотана проволока), а затем, уже в 1960-е — подкову Смэйла, обладающую крайне сложной динамикой, схожей с той, что демонстрирует система, описанная Левинсоном. Это были два в высшей степени странных аттрактора.

Соленоид Смэйла, представляющий собой тор, трижды обмотанный

вокруг другого тора в четырехмерном пространстве.

Описание соленоида Смэйла, и в особенности подковы Смэйла, стало важным шагом на пути к пониманию связи между существованием гомоклинической орбиты и непериодическим и неустойчивым поведением, которое позднее стало называться детерминированным хаосом. С мэйл доказал, что существование гомоклинических точек подразумевает существование подковы — фигуры, служащей воплощением топологических операций растяжения и складывания, которые, как мы объясним в третьей главе, порождают хаос.

Возьмем на себя смелость рассмотреть хаос подробнее. До сих пор мы пытались приблизиться к хаосу с помощью интуитивно понятных примеров, однако понять, что же происходит на самом деле, совсем не просто. В научно-популярных книгах и даже в учебниках объяснения начинаются с числовых примеров, и только потом автор приводит примеры из геометрии и топологии.

Мы же решили действовать противоположным образом: во-первых, именно так исторически изучался хаос, во-вторых, так читатель сможет лучше понять, как и математики постепенно понимали, что такое хаос, — сначала с качественной, а затем с количественной точки зрения. У вас кружится голова от непонятных слов? Не беспокойтесь, математики прошлого чувствовали себя точно так же.

И соленоид, и подкова Смэйла — это примеры отображений, геометрических преобразований, в которых проявляется хаос. Преобразование, порождающее подкову Смэйла (обозначим его через f), очень простое. Чтобы выполнить его, рассмотрим квадрат или любую другую фигуру похожей формы. Сначала расположим квадрат на плоскости, растянем его, затем сложим пополам в форме подковы и уложим в границы, определенные краями исходной фигуры. Если мы будем повторять преобразование f снова и снова бесконечное число раз, то получим сложную и запутанную многослойную структуру, и возникнет хаос. На первой итерации исходный квадрат превратится в подкову в форме буквы U, как показано на следующем рисунке. На второй итерации подкова превратится в другую подкову, состоящую из трех кривых в форме буквы U. На третьей итерации мы получим уже семь кривых той же формы, и так далее. В пределе имеем бесконечно запутанную кривую, очень похожую на гомоклиническую сеть, которая приводила в ужас Пуанкаре. И действительно, в растяжении и складывании заключен геометрический смысл хаоса.

Последовательные итерации при построении подковы Смэйла. Они заключаются в растяжении и складывании кривой в форме буквы U в границах исходной фигуры.

Последовательно выполняемые операции растяжения и складывания, характерные для подковы Смэйла, — верный признак хаоса. Следовательно, эти же операции вы встретите во многих хаотических отображениях. В качестве примера можно привести «отображение пекаря», названное так за сходство с операциями, выполняемыми при замешивании теста, или «отображение кота Арнольда», определенное В. И. Арнольдом (о нем мы расскажем позже), которое заключается в последовательном растяжении и складывании изображения головы кота. Но мы не будем растягивать и складывать голову кота, вместо этого используем более привлекательное изображение — фотографию модели Лины Седерберг, мисс Ноябрь журнала «Плейбой» 1972 года. С 1970-х годов фрагмент ее фотографии используется в качестве тестового изображения в алгоритмах сжатия изображений и, по сути, является стандартом в науке и технике. (И кто-то еще осмеливается заявлять, что математики — скучные люди!) Между прочим, номер «Плейбоя» с этой фотографией стал самым продаваемым за всю историю журнала.

Если мы несколько раз применим отображение кота Арнольда к этой фотографии, то есть будем последовательно растягивать и складывать ее определенным образом, то заметим, что уже через несколько итераций лицо модели станет неразличимым. Но после определенного числа итераций (а именно 192) лицо модели можно будет увидеть снова. Точнее говоря, можно будет увидеть очень похожее лицо — траектории динамических систем могут совпадать друг с другом, только если являются периодическими, а мы рассматриваем хаотическую орбиту. Тем не менее лицо Лины будет появляться и исчезать бесконечное число раз. Так проявляет себя хаос.

Поделиться:
Популярные книги

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4